通过可编程继电器的熔融沉积建模3D打印机对静止打印的简单适应:离散建模和实验

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-02-01 Epub Date: 2024-02-15 DOI:10.1089/3dp.2022.0062
Sanjana Sham Sunder Bharadwaj, Chia-Yi Lin, Mounica J Divvela, Yong Lak Joo
{"title":"通过可编程继电器的熔融沉积建模3D打印机对静止打印的简单适应:离散建模和实验","authors":"Sanjana Sham Sunder Bharadwaj, Chia-Yi Lin, Mounica J Divvela, Yong Lak Joo","doi":"10.1089/3dp.2022.0062","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a fused deposition modeling 3D printer is modified into a motionless printer, which has the potential to print patterns in a noiseless manner possibly with improved resolution and in less delay time by eliminating the movement of nozzle or collector. In this motionless 3D printer, both nozzle and collector are fixed, whereas the extruded polymer melt is driven by high-voltage switching points on the collector. By this approach, simple 3D patterns such as multilayer circles, squares, and walls have been printed using two polymer melts with different rheological properties, high-temperature polylactic acid and acrylonitrile butadiene styrene. Furthermore, a discretized, nonisothermal bead and spring model is developed to probe printing patterns. The effect of parameters, such as number of conducting points, switching time, voltage and material properties on the accuracy of the printed simple 3D patterns, are thoroughly studied, and we demonstrated that various fiber collection patterns obtained from the experiments are favorably compared with the simulation results.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880643/pdf/","citationCount":"0","resultStr":"{\"title\":\"Facile Adaptation of a Fused Deposition Modeling 3D Printer to Motionless Printing through Programmable Electric Relay: Discretized Modeling and Experiments.\",\"authors\":\"Sanjana Sham Sunder Bharadwaj, Chia-Yi Lin, Mounica J Divvela, Yong Lak Joo\",\"doi\":\"10.1089/3dp.2022.0062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a fused deposition modeling 3D printer is modified into a motionless printer, which has the potential to print patterns in a noiseless manner possibly with improved resolution and in less delay time by eliminating the movement of nozzle or collector. In this motionless 3D printer, both nozzle and collector are fixed, whereas the extruded polymer melt is driven by high-voltage switching points on the collector. By this approach, simple 3D patterns such as multilayer circles, squares, and walls have been printed using two polymer melts with different rheological properties, high-temperature polylactic acid and acrylonitrile butadiene styrene. Furthermore, a discretized, nonisothermal bead and spring model is developed to probe printing patterns. The effect of parameters, such as number of conducting points, switching time, voltage and material properties on the accuracy of the printed simple 3D patterns, are thoroughly studied, and we demonstrated that various fiber collection patterns obtained from the experiments are favorably compared with the simulation results.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0062\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究将熔融沉积建模三维打印机改装为无运动打印机,通过消除喷嘴或收集器的运动,有可能以无噪音的方式打印图案,并提高分辨率和缩短延迟时间。在这种无运动三维打印机中,喷嘴和收集器都是固定的,而挤出的聚合物熔体则由收集器上的高压开关点驱动。通过这种方法,使用两种具有不同流变特性的聚合物熔体(高温聚乳酸和丙烯腈-丁二烯-苯乙烯)打印出了多层圆形、方形和墙壁等简单的三维图案。此外,还开发了一个离散化、非等温珠和弹簧模型来探测印刷图案。我们深入研究了导电点数量、开关时间、电压和材料特性等参数对打印出的简单三维图案精度的影响,并证明实验中获得的各种纤维收集图案与模拟结果相比效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile Adaptation of a Fused Deposition Modeling 3D Printer to Motionless Printing through Programmable Electric Relay: Discretized Modeling and Experiments.

In this study, a fused deposition modeling 3D printer is modified into a motionless printer, which has the potential to print patterns in a noiseless manner possibly with improved resolution and in less delay time by eliminating the movement of nozzle or collector. In this motionless 3D printer, both nozzle and collector are fixed, whereas the extruded polymer melt is driven by high-voltage switching points on the collector. By this approach, simple 3D patterns such as multilayer circles, squares, and walls have been printed using two polymer melts with different rheological properties, high-temperature polylactic acid and acrylonitrile butadiene styrene. Furthermore, a discretized, nonisothermal bead and spring model is developed to probe printing patterns. The effect of parameters, such as number of conducting points, switching time, voltage and material properties on the accuracy of the printed simple 3D patterns, are thoroughly studied, and we demonstrated that various fiber collection patterns obtained from the experiments are favorably compared with the simulation results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信