Conilius J. Chagwia, Aneshkumar Maharaj, D. Brijlall
{"title":"大学生在学习级数收敛概念时的心理建构","authors":"Conilius J. Chagwia, Aneshkumar Maharaj, D. Brijlall","doi":"10.4102/pythagoras.v41i1.567","DOIUrl":null,"url":null,"abstract":"Many mathematical concepts in calculus and other courses depend heavily on the limit concept, like the definite integral as the limit of Riemann sums, Taylor series and the differential in multivariate calculus. Convergent partial sums of a sequence may be used to define the limit of an infinite series. The limit of an infinite series can be defined as the limit (as n → ∞) of the sequence of partial sums. Infinite series development was motivated by the approximation of unknown areas and for the approximation of the value of π (Hartman, 2008). In about 1350, Suiseth indicated","PeriodicalId":43521,"journal":{"name":"Pythagoras","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"University students’ mental construction when learning the Convergence of a Series concept\",\"authors\":\"Conilius J. Chagwia, Aneshkumar Maharaj, D. Brijlall\",\"doi\":\"10.4102/pythagoras.v41i1.567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many mathematical concepts in calculus and other courses depend heavily on the limit concept, like the definite integral as the limit of Riemann sums, Taylor series and the differential in multivariate calculus. Convergent partial sums of a sequence may be used to define the limit of an infinite series. The limit of an infinite series can be defined as the limit (as n → ∞) of the sequence of partial sums. Infinite series development was motivated by the approximation of unknown areas and for the approximation of the value of π (Hartman, 2008). In about 1350, Suiseth indicated\",\"PeriodicalId\":43521,\"journal\":{\"name\":\"Pythagoras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pythagoras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4102/pythagoras.v41i1.567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pythagoras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4102/pythagoras.v41i1.567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
University students’ mental construction when learning the Convergence of a Series concept
Many mathematical concepts in calculus and other courses depend heavily on the limit concept, like the definite integral as the limit of Riemann sums, Taylor series and the differential in multivariate calculus. Convergent partial sums of a sequence may be used to define the limit of an infinite series. The limit of an infinite series can be defined as the limit (as n → ∞) of the sequence of partial sums. Infinite series development was motivated by the approximation of unknown areas and for the approximation of the value of π (Hartman, 2008). In about 1350, Suiseth indicated
期刊介绍:
Pythagoras is a scholarly research journal that provides a forum for the presentation and critical discussion of current research and developments in mathematics education at both national and international level. Pythagoras publishes articles that significantly contribute to our understanding of mathematics teaching, learning and curriculum studies, including reports of research (experiments, case studies, surveys, philosophical and historical studies, etc.), critical analyses of school mathematics curricular and teacher development initiatives, literature reviews, theoretical analyses, exposition of mathematical thinking (mathematical practices) and commentaries on issues relating to the teaching and learning of mathematics at all levels of education.