M. Raza, M. Yousaf, J. Ahmad, M. Rashid, K. Majeed, S. K. Tahir, Shumaila Ashraf, M. Numan, A. Khalid, H. Rehman
{"title":"益生元补充剂通过改善生长性能、健康评分和血清生物标志物来调节公牛犊断奶前的应激","authors":"M. Raza, M. Yousaf, J. Ahmad, M. Rashid, K. Majeed, S. K. Tahir, Shumaila Ashraf, M. Numan, A. Khalid, H. Rehman","doi":"10.17221/70/2021-cjas","DOIUrl":null,"url":null,"abstract":"Neonatal calves are prone to gastrointestinal infections and microbial dysbiosis that lead to high morbidity and mortality. Prebiotics can be used to mitigate the adverse effects of gut diseases and microbial dysbiosis. Forty male Holstein-Friesian calves (2 ± 1 day old) were divided into four dietary treatments: control (milk without prebiotics), YCW-2, YCW-4 (milk containing 2 or 4 g/day/calf of yeast cell wall, respectively), and cMOS (milk containing commercial mannan-oligosaccharides 4 g/day/calf). Milk intake, feed intake, and health scores were recorded daily, whereas body weight, dry matter intake (DMI), and body measurements were recorded weekly. Feed efficiency (FE) was determined at the end of the trial (eight weeks). Cell-mediated immunity (CMI) was assessed by the topical application of dinitrochlorobenzene. Blood samples were collected fortnightly to determine glucose, non-esterified fatty acid (NEFA), blood urea nitrogen (BUN), and beta-hydroxybutyric acid (βHBA). Cell wall supplemented calves had significantly higher (P < 0.05) final body weights, DMI, and body measurements along with improved (P < 0.05) faecal scores. Feed intake was higher (P < 0.05) in both the YCW-supplemented calves. Glucose was lower (P < 0.001), whereas BUN and βHBA were significantly higher in the YCW-2 animals. No differences were observed in FE, CMI, and NEFA between all the experimental animals. The yeast cell wall (2 g) may have the potential to improve the growth performance and health status of neonatal calves.","PeriodicalId":10972,"journal":{"name":"Czech Journal of Animal Science","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prebiotics supplementation modulates pre-weaning stress in male cattle calves by improving growth performance, health scores and serum biomarkers\",\"authors\":\"M. Raza, M. Yousaf, J. Ahmad, M. Rashid, K. Majeed, S. K. Tahir, Shumaila Ashraf, M. Numan, A. Khalid, H. Rehman\",\"doi\":\"10.17221/70/2021-cjas\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neonatal calves are prone to gastrointestinal infections and microbial dysbiosis that lead to high morbidity and mortality. Prebiotics can be used to mitigate the adverse effects of gut diseases and microbial dysbiosis. Forty male Holstein-Friesian calves (2 ± 1 day old) were divided into four dietary treatments: control (milk without prebiotics), YCW-2, YCW-4 (milk containing 2 or 4 g/day/calf of yeast cell wall, respectively), and cMOS (milk containing commercial mannan-oligosaccharides 4 g/day/calf). Milk intake, feed intake, and health scores were recorded daily, whereas body weight, dry matter intake (DMI), and body measurements were recorded weekly. Feed efficiency (FE) was determined at the end of the trial (eight weeks). Cell-mediated immunity (CMI) was assessed by the topical application of dinitrochlorobenzene. Blood samples were collected fortnightly to determine glucose, non-esterified fatty acid (NEFA), blood urea nitrogen (BUN), and beta-hydroxybutyric acid (βHBA). Cell wall supplemented calves had significantly higher (P < 0.05) final body weights, DMI, and body measurements along with improved (P < 0.05) faecal scores. Feed intake was higher (P < 0.05) in both the YCW-supplemented calves. Glucose was lower (P < 0.001), whereas BUN and βHBA were significantly higher in the YCW-2 animals. No differences were observed in FE, CMI, and NEFA between all the experimental animals. The yeast cell wall (2 g) may have the potential to improve the growth performance and health status of neonatal calves.\",\"PeriodicalId\":10972,\"journal\":{\"name\":\"Czech Journal of Animal Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czech Journal of Animal Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/70/2021-cjas\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czech Journal of Animal Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/70/2021-cjas","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Prebiotics supplementation modulates pre-weaning stress in male cattle calves by improving growth performance, health scores and serum biomarkers
Neonatal calves are prone to gastrointestinal infections and microbial dysbiosis that lead to high morbidity and mortality. Prebiotics can be used to mitigate the adverse effects of gut diseases and microbial dysbiosis. Forty male Holstein-Friesian calves (2 ± 1 day old) were divided into four dietary treatments: control (milk without prebiotics), YCW-2, YCW-4 (milk containing 2 or 4 g/day/calf of yeast cell wall, respectively), and cMOS (milk containing commercial mannan-oligosaccharides 4 g/day/calf). Milk intake, feed intake, and health scores were recorded daily, whereas body weight, dry matter intake (DMI), and body measurements were recorded weekly. Feed efficiency (FE) was determined at the end of the trial (eight weeks). Cell-mediated immunity (CMI) was assessed by the topical application of dinitrochlorobenzene. Blood samples were collected fortnightly to determine glucose, non-esterified fatty acid (NEFA), blood urea nitrogen (BUN), and beta-hydroxybutyric acid (βHBA). Cell wall supplemented calves had significantly higher (P < 0.05) final body weights, DMI, and body measurements along with improved (P < 0.05) faecal scores. Feed intake was higher (P < 0.05) in both the YCW-supplemented calves. Glucose was lower (P < 0.001), whereas BUN and βHBA were significantly higher in the YCW-2 animals. No differences were observed in FE, CMI, and NEFA between all the experimental animals. The yeast cell wall (2 g) may have the potential to improve the growth performance and health status of neonatal calves.
期刊介绍:
Original scientific papers and critical reviews covering all areas of genetics and breeding, physiology, reproduction, nutrition and feeds, technology, ethology and economics of cattle, pig, sheep, goat, poultry, fish and other farm animal management. Papers are published in English.