{"title":"棱镜理论","authors":"Johannes Anschütz, Arthur-César Le Bras","doi":"10.1017/fmp.2022.22","DOIUrl":null,"url":null,"abstract":"Abstract We define, for each quasisyntomic ring R (in the sense of Bhatt et al., Publ. Math. IHES 129 (2019), 199–310), a category \n$\\mathrm {DM}^{\\mathrm {adm}}(R)$\n of admissible prismatic Dieudonné crystals over R and a functor from p-divisible groups over R to \n$\\mathrm {DM}^{\\mathrm {adm}}(R)$\n . We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic formalism recently developed by Bhatt and Scholze.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Prismatic Dieudonné Theory\",\"authors\":\"Johannes Anschütz, Arthur-César Le Bras\",\"doi\":\"10.1017/fmp.2022.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We define, for each quasisyntomic ring R (in the sense of Bhatt et al., Publ. Math. IHES 129 (2019), 199–310), a category \\n$\\\\mathrm {DM}^{\\\\mathrm {adm}}(R)$\\n of admissible prismatic Dieudonné crystals over R and a functor from p-divisible groups over R to \\n$\\\\mathrm {DM}^{\\\\mathrm {adm}}(R)$\\n . We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic formalism recently developed by Bhatt and Scholze.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2022.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2022.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Abstract We define, for each quasisyntomic ring R (in the sense of Bhatt et al., Publ. Math. IHES 129 (2019), 199–310), a category
$\mathrm {DM}^{\mathrm {adm}}(R)$
of admissible prismatic Dieudonné crystals over R and a functor from p-divisible groups over R to
$\mathrm {DM}^{\mathrm {adm}}(R)$
. We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic formalism recently developed by Bhatt and Scholze.