Thibaut Arnoulx de Pirey, L. Cugliandolo, V. Lecomte, F. Wijland
{"title":"路径积分与随机微积分","authors":"Thibaut Arnoulx de Pirey, L. Cugliandolo, V. Lecomte, F. Wijland","doi":"10.1080/00018732.2023.2199229","DOIUrl":null,"url":null,"abstract":"Path integrals are a ubiquitous tool in theoretical physics. However, their use is sometimes hindered by the lack of control on various manipulations -- such as performing a change of the integration path -- one would like to carry out in the light-hearted fashion that physicists enjoy. Similar issues arise in the field of stochastic calculus, which we review to prepare the ground for a proper construction of path integrals. At the level of path integration, and in arbitrary space dimension, we not only report on existing Riemannian geometry-based approaches that render path integrals amenable to the standard rules of calculus, but also bring forth new routes, based on a fully time-discretized approach, that achieve the same goal. We illustrate these various definitions of path integration on simple examples such as the diffusion of a particle on a sphere.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"1 1","pages":""},"PeriodicalIF":35.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Path integrals and stochastic calculus\",\"authors\":\"Thibaut Arnoulx de Pirey, L. Cugliandolo, V. Lecomte, F. Wijland\",\"doi\":\"10.1080/00018732.2023.2199229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Path integrals are a ubiquitous tool in theoretical physics. However, their use is sometimes hindered by the lack of control on various manipulations -- such as performing a change of the integration path -- one would like to carry out in the light-hearted fashion that physicists enjoy. Similar issues arise in the field of stochastic calculus, which we review to prepare the ground for a proper construction of path integrals. At the level of path integration, and in arbitrary space dimension, we not only report on existing Riemannian geometry-based approaches that render path integrals amenable to the standard rules of calculus, but also bring forth new routes, based on a fully time-discretized approach, that achieve the same goal. We illustrate these various definitions of path integration on simple examples such as the diffusion of a particle on a sphere.\",\"PeriodicalId\":7373,\"journal\":{\"name\":\"Advances in Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":35.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/00018732.2023.2199229\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2023.2199229","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Path integrals are a ubiquitous tool in theoretical physics. However, their use is sometimes hindered by the lack of control on various manipulations -- such as performing a change of the integration path -- one would like to carry out in the light-hearted fashion that physicists enjoy. Similar issues arise in the field of stochastic calculus, which we review to prepare the ground for a proper construction of path integrals. At the level of path integration, and in arbitrary space dimension, we not only report on existing Riemannian geometry-based approaches that render path integrals amenable to the standard rules of calculus, but also bring forth new routes, based on a fully time-discretized approach, that achieve the same goal. We illustrate these various definitions of path integration on simple examples such as the diffusion of a particle on a sphere.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.