基于自组织图的月度河流流量随机模拟

Q3 Social Sciences
J. A. S. Filho, C. Farias
{"title":"基于自组织图的月度河流流量随机模拟","authors":"J. A. S. Filho, C. Farias","doi":"10.4090/JUEE.2018.V12N2.219230","DOIUrl":null,"url":null,"abstract":"Extreme hydrological conditions and increasing water demands observed in semiarid Brazil have generated conflicts regarding to the best use of existing water resources. Synthetic generation models of river flows are often used as support for the definition of water system operating rules, which allow the establishment of rationing policies before water scarcity spells. This work aims at verifying the applicability of models based on self-organizing maps (SOM) for stochastic modeling of monthly river flows. The basic principle of the study consisted of using SOM models in order to define the deterministic component of river flow series and a density probability function (stochastic component) to represent the resulting residuals. During calibration of all networks, values of NASH were above 0.9989 for the applications. The results were promising, indicating that the established models are capable of producing synthetic series of inflows with excellent performance.","PeriodicalId":17594,"journal":{"name":"Journal of Urban and Environmental Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"STOCHASTIC MODELING OF MONTHLY RIVER FLOWS BY SELF-ORGANIZING MAPS\",\"authors\":\"J. A. S. Filho, C. Farias\",\"doi\":\"10.4090/JUEE.2018.V12N2.219230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme hydrological conditions and increasing water demands observed in semiarid Brazil have generated conflicts regarding to the best use of existing water resources. Synthetic generation models of river flows are often used as support for the definition of water system operating rules, which allow the establishment of rationing policies before water scarcity spells. This work aims at verifying the applicability of models based on self-organizing maps (SOM) for stochastic modeling of monthly river flows. The basic principle of the study consisted of using SOM models in order to define the deterministic component of river flow series and a density probability function (stochastic component) to represent the resulting residuals. During calibration of all networks, values of NASH were above 0.9989 for the applications. The results were promising, indicating that the established models are capable of producing synthetic series of inflows with excellent performance.\",\"PeriodicalId\":17594,\"journal\":{\"name\":\"Journal of Urban and Environmental Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urban and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4090/JUEE.2018.V12N2.219230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4090/JUEE.2018.V12N2.219230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

摘要

在半干旱的巴西观察到的极端水文条件和不断增加的用水需求已经在最佳利用现有水资源方面产生了冲突。河流流量的综合生成模型经常被用来支持水系统运行规则的定义,从而允许在缺水发生之前建立配给政策。本研究旨在验证基于自组织图(SOM)的模型在月度河流流量随机建模中的适用性。该研究的基本原理是使用SOM模型来定义河流流量序列的确定性成分,并使用密度概率函数(随机成分)来表示所得残差。在所有网络的校准过程中,应用程序的NASH值都在0.9989以上。结果表明,所建立的模型能够生产出性能优良的综合流系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STOCHASTIC MODELING OF MONTHLY RIVER FLOWS BY SELF-ORGANIZING MAPS
Extreme hydrological conditions and increasing water demands observed in semiarid Brazil have generated conflicts regarding to the best use of existing water resources. Synthetic generation models of river flows are often used as support for the definition of water system operating rules, which allow the establishment of rationing policies before water scarcity spells. This work aims at verifying the applicability of models based on self-organizing maps (SOM) for stochastic modeling of monthly river flows. The basic principle of the study consisted of using SOM models in order to define the deterministic component of river flow series and a density probability function (stochastic component) to represent the resulting residuals. During calibration of all networks, values of NASH were above 0.9989 for the applications. The results were promising, indicating that the established models are capable of producing synthetic series of inflows with excellent performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Urban and Environmental Engineering
Journal of Urban and Environmental Engineering Social Sciences-Urban Studies
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Urban and Environmental Engineering (JUEE) provides a forum for original papers and for the exchange of information and views on significant developments in urban and environmental engineering worldwide. The scope of the journal includes: (a) Water Resources and Waste Management [...] (b) Constructions and Environment[...] (c) Urban Design[...] (d) Transportation Engineering[...] The Editors welcome original papers, scientific notes and discussions, in English, in those and related topics. All papers submitted to the Journal are peer reviewed by an international panel of Associate Editors and other experts. Authors are encouraged to suggest potential referees with their submission. Authors will have to confirm that the work, or any part of it, has not been published before and is not presently being considered for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信