地震波类型和入射方向对高面板堆石坝动力响应的影响

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences
Chen-guang Zhou , De-gao Zou , Xiang Yu
{"title":"地震波类型和入射方向对高面板堆石坝动力响应的影响","authors":"Chen-guang Zhou ,&nbsp;De-gao Zou ,&nbsp;Xiang Yu","doi":"10.1016/j.eqs.2022.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>Owing to the stochastic behavior of earthquakes and complex crustal structure, wave type and incident direction are uncertain when seismic waves arrive at a structure. In addition, because of the different types of the structures and terrains, the traveling wave effects have different influences on the dynamic response of the structures. For the tall concrete-faced rockfill dam (CFRD), it is not only built in the complex terrain such as river valley, but also its height has reached 300 m level, which puts forward higher requirements for the seismic safety of the anti-seepage system mainly comprising concrete face slabs, especially the accurate location of the weak area in seism. Considering the limitations of the traditional uniform vibration analysis method, we implemented an efficient dynamic interaction analysis between a tall CFRD and its foundation using a non-uniform wave input method with a viscous-spring artificial boundary and equivalent nodal loads. This method was then applied to investigate the dynamic stress distribution on the concrete face slabs for different seismic wave types and incident directions. The results indicate that dam-foundation interactions behave differently at different wave incident angles, and that the traveling wave effect becomes more evident in valley topography. Seismic wave type and incident direction dramatically influenced stress in the face slab, and the extreme stress values and distribution law will vary under oblique wave incidence. The influence of the incident direction on slab stress was particularly apparent when SH-waves arrived from the left bank. Specifically, the extreme stress values in the face slab increased with an increasing incident angle. Interestingly, the locations of the extreme stress values changed mainly along the axis of the dam, and did not exhibit large changes in height. The seismic safety of CFRDs is therefore lower at higher incident angles from an anti-seepage perspective. Therefore, it is necessary to consider both the seismic wave type and incident direction during seismic capacity evaluations of tall CFRDs.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"35 5","pages":"Pages 343-354"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451922003639/pdfft?md5=82f591ec391bc67603588c1a1dde57f6&pid=1-s2.0-S1674451922003639-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Influence of seismic wave type and incident direction on the dynamic response of tall concrete-faced rockfill dams\",\"authors\":\"Chen-guang Zhou ,&nbsp;De-gao Zou ,&nbsp;Xiang Yu\",\"doi\":\"10.1016/j.eqs.2022.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Owing to the stochastic behavior of earthquakes and complex crustal structure, wave type and incident direction are uncertain when seismic waves arrive at a structure. In addition, because of the different types of the structures and terrains, the traveling wave effects have different influences on the dynamic response of the structures. For the tall concrete-faced rockfill dam (CFRD), it is not only built in the complex terrain such as river valley, but also its height has reached 300 m level, which puts forward higher requirements for the seismic safety of the anti-seepage system mainly comprising concrete face slabs, especially the accurate location of the weak area in seism. Considering the limitations of the traditional uniform vibration analysis method, we implemented an efficient dynamic interaction analysis between a tall CFRD and its foundation using a non-uniform wave input method with a viscous-spring artificial boundary and equivalent nodal loads. This method was then applied to investigate the dynamic stress distribution on the concrete face slabs for different seismic wave types and incident directions. The results indicate that dam-foundation interactions behave differently at different wave incident angles, and that the traveling wave effect becomes more evident in valley topography. Seismic wave type and incident direction dramatically influenced stress in the face slab, and the extreme stress values and distribution law will vary under oblique wave incidence. The influence of the incident direction on slab stress was particularly apparent when SH-waves arrived from the left bank. Specifically, the extreme stress values in the face slab increased with an increasing incident angle. Interestingly, the locations of the extreme stress values changed mainly along the axis of the dam, and did not exhibit large changes in height. The seismic safety of CFRDs is therefore lower at higher incident angles from an anti-seepage perspective. Therefore, it is necessary to consider both the seismic wave type and incident direction during seismic capacity evaluations of tall CFRDs.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":\"35 5\",\"pages\":\"Pages 343-354\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674451922003639/pdfft?md5=82f591ec391bc67603588c1a1dde57f6&pid=1-s2.0-S1674451922003639-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451922003639\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451922003639","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

摘要

由于地震的随机性和复杂的地壳结构,地震波到达结构时的波型和入射方向是不确定的。此外,由于结构类型和地形的不同,行波效应对结构动力响应的影响也不同。高层混凝土面板堆石坝不仅建在河谷等复杂地形中,而且高度已达到300 m水平,这就对以混凝土面板为主的防渗体系的抗震安全性提出了更高的要求,尤其是对地震薄弱区域的准确定位。针对传统均匀振动分析方法的局限性,采用粘弹簧人工边界和等效节点荷载的非均匀波输入方法,实现了高层CFRD与基础的高效动力相互作用分析。应用该方法研究了不同地震波类型和入射方向下混凝土面板的动应力分布。结果表明,不同波入射角下坝基相互作用表现不同,且行波效应在山谷地形中更为明显。地震波类型和入射方向对面板应力影响较大,在斜波入射下,面板的极值应力和分布规律会发生变化。当sh波从左岸到达时,入射方向对板应力的影响尤为明显。随着入射角的增大,面板的极限应力值增大。有趣的是,极端应力值的位置主要沿大坝轴线变化,高度变化不大。因此,从防渗角度看,当入射角较大时,cfrd的抗震安全性较低。因此,在进行高层堆垛堆抗震能力评价时,有必要同时考虑地震波类型和入射方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of seismic wave type and incident direction on the dynamic response of tall concrete-faced rockfill dams

Owing to the stochastic behavior of earthquakes and complex crustal structure, wave type and incident direction are uncertain when seismic waves arrive at a structure. In addition, because of the different types of the structures and terrains, the traveling wave effects have different influences on the dynamic response of the structures. For the tall concrete-faced rockfill dam (CFRD), it is not only built in the complex terrain such as river valley, but also its height has reached 300 m level, which puts forward higher requirements for the seismic safety of the anti-seepage system mainly comprising concrete face slabs, especially the accurate location of the weak area in seism. Considering the limitations of the traditional uniform vibration analysis method, we implemented an efficient dynamic interaction analysis between a tall CFRD and its foundation using a non-uniform wave input method with a viscous-spring artificial boundary and equivalent nodal loads. This method was then applied to investigate the dynamic stress distribution on the concrete face slabs for different seismic wave types and incident directions. The results indicate that dam-foundation interactions behave differently at different wave incident angles, and that the traveling wave effect becomes more evident in valley topography. Seismic wave type and incident direction dramatically influenced stress in the face slab, and the extreme stress values and distribution law will vary under oblique wave incidence. The influence of the incident direction on slab stress was particularly apparent when SH-waves arrived from the left bank. Specifically, the extreme stress values in the face slab increased with an increasing incident angle. Interestingly, the locations of the extreme stress values changed mainly along the axis of the dam, and did not exhibit large changes in height. The seismic safety of CFRDs is therefore lower at higher incident angles from an anti-seepage perspective. Therefore, it is necessary to consider both the seismic wave type and incident direction during seismic capacity evaluations of tall CFRDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信