{"title":"一种基于深度学习的带宽压缩非正交多载波通信均衡方案","authors":"Qiang Chen, Linzhou Li","doi":"10.53106/160792642021092205006","DOIUrl":null,"url":null,"abstract":"Spectrally efficient frequency division multiplexing (SEFDM) is a bandwidth-compressed non-orthogonal multicarrier communication scheme, which provides improved spectral efficiency compared to orthogonal frequency division multiplexing (OFDM) system. The loss of orthogonality yields the self-introduced inter-carrier interference (ICI) complicating the equalizer design. In this work, a deep learning (DL) -based SEFDM equalization scheme is proposed to characterize the ICI and to detect the transmitted information bits. The DL-based equalization scheme is trained offline using randomly-generated data and then deployed online. The performance of the equalization scheme is tested by extensive numerical simulations. The results show that the proposed equalization scheme outperforms the linear equalization based equalization scheme, such as zero forcing (ZF), minimum mean squared error (MMSE) and truncated singular value decomposition (TSVD), under additive white Gaussian noise (AWGN) channel in terms of the bit-error rate (BER). Especially for BPSK, the uncoded BER performance approaches the traditional OFDM even for the compression ratio of 0.7, which saves the bandwidth by 30%.","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"22 1","pages":"1001-1009"},"PeriodicalIF":0.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Learning Based Equalization Scheme for Bandwidthcompressed Non-orthogonal Multicarrier Communication\",\"authors\":\"Qiang Chen, Linzhou Li\",\"doi\":\"10.53106/160792642021092205006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrally efficient frequency division multiplexing (SEFDM) is a bandwidth-compressed non-orthogonal multicarrier communication scheme, which provides improved spectral efficiency compared to orthogonal frequency division multiplexing (OFDM) system. The loss of orthogonality yields the self-introduced inter-carrier interference (ICI) complicating the equalizer design. In this work, a deep learning (DL) -based SEFDM equalization scheme is proposed to characterize the ICI and to detect the transmitted information bits. The DL-based equalization scheme is trained offline using randomly-generated data and then deployed online. The performance of the equalization scheme is tested by extensive numerical simulations. The results show that the proposed equalization scheme outperforms the linear equalization based equalization scheme, such as zero forcing (ZF), minimum mean squared error (MMSE) and truncated singular value decomposition (TSVD), under additive white Gaussian noise (AWGN) channel in terms of the bit-error rate (BER). Especially for BPSK, the uncoded BER performance approaches the traditional OFDM even for the compression ratio of 0.7, which saves the bandwidth by 30%.\",\"PeriodicalId\":50172,\"journal\":{\"name\":\"Journal of Internet Technology\",\"volume\":\"22 1\",\"pages\":\"1001-1009\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642021092205006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.53106/160792642021092205006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Deep Learning Based Equalization Scheme for Bandwidthcompressed Non-orthogonal Multicarrier Communication
Spectrally efficient frequency division multiplexing (SEFDM) is a bandwidth-compressed non-orthogonal multicarrier communication scheme, which provides improved spectral efficiency compared to orthogonal frequency division multiplexing (OFDM) system. The loss of orthogonality yields the self-introduced inter-carrier interference (ICI) complicating the equalizer design. In this work, a deep learning (DL) -based SEFDM equalization scheme is proposed to characterize the ICI and to detect the transmitted information bits. The DL-based equalization scheme is trained offline using randomly-generated data and then deployed online. The performance of the equalization scheme is tested by extensive numerical simulations. The results show that the proposed equalization scheme outperforms the linear equalization based equalization scheme, such as zero forcing (ZF), minimum mean squared error (MMSE) and truncated singular value decomposition (TSVD), under additive white Gaussian noise (AWGN) channel in terms of the bit-error rate (BER). Especially for BPSK, the uncoded BER performance approaches the traditional OFDM even for the compression ratio of 0.7, which saves the bandwidth by 30%.
期刊介绍:
The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere.
Topics of interest to JIT include but not limited to:
Broadband Networks
Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business)
Network Management
Network Operating System (NOS)
Intelligent systems engineering
Government or Staff Jobs Computerization
National Information Policy
Multimedia systems
Network Behavior Modeling
Wireless/Satellite Communication
Digital Library
Distance Learning
Internet/WWW Applications
Telecommunication Networks
Security in Networks and Systems
Cloud Computing
Internet of Things (IoT)
IPv6 related topics are especially welcome.