一种基于深度学习的带宽压缩非正交多载波通信均衡方案

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qiang Chen, Linzhou Li
{"title":"一种基于深度学习的带宽压缩非正交多载波通信均衡方案","authors":"Qiang Chen, Linzhou Li","doi":"10.53106/160792642021092205006","DOIUrl":null,"url":null,"abstract":"Spectrally efficient frequency division multiplexing (SEFDM) is a bandwidth-compressed non-orthogonal multicarrier communication scheme, which provides improved spectral efficiency compared to orthogonal frequency division multiplexing (OFDM) system. The loss of orthogonality yields the self-introduced inter-carrier interference (ICI) complicating the equalizer design. In this work, a deep learning (DL) -based SEFDM equalization scheme is proposed to characterize the ICI and to detect the transmitted information bits. The DL-based equalization scheme is trained offline using randomly-generated data and then deployed online. The performance of the equalization scheme is tested by extensive numerical simulations. The results show that the proposed equalization scheme outperforms the linear equalization based equalization scheme, such as zero forcing (ZF), minimum mean squared error (MMSE) and truncated singular value decomposition (TSVD), under additive white Gaussian noise (AWGN) channel in terms of the bit-error rate (BER). Especially for BPSK, the uncoded BER performance approaches the traditional OFDM even for the compression ratio of 0.7, which saves the bandwidth by 30%.","PeriodicalId":50172,"journal":{"name":"Journal of Internet Technology","volume":"22 1","pages":"1001-1009"},"PeriodicalIF":0.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Learning Based Equalization Scheme for Bandwidthcompressed Non-orthogonal Multicarrier Communication\",\"authors\":\"Qiang Chen, Linzhou Li\",\"doi\":\"10.53106/160792642021092205006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectrally efficient frequency division multiplexing (SEFDM) is a bandwidth-compressed non-orthogonal multicarrier communication scheme, which provides improved spectral efficiency compared to orthogonal frequency division multiplexing (OFDM) system. The loss of orthogonality yields the self-introduced inter-carrier interference (ICI) complicating the equalizer design. In this work, a deep learning (DL) -based SEFDM equalization scheme is proposed to characterize the ICI and to detect the transmitted information bits. The DL-based equalization scheme is trained offline using randomly-generated data and then deployed online. The performance of the equalization scheme is tested by extensive numerical simulations. The results show that the proposed equalization scheme outperforms the linear equalization based equalization scheme, such as zero forcing (ZF), minimum mean squared error (MMSE) and truncated singular value decomposition (TSVD), under additive white Gaussian noise (AWGN) channel in terms of the bit-error rate (BER). Especially for BPSK, the uncoded BER performance approaches the traditional OFDM even for the compression ratio of 0.7, which saves the bandwidth by 30%.\",\"PeriodicalId\":50172,\"journal\":{\"name\":\"Journal of Internet Technology\",\"volume\":\"22 1\",\"pages\":\"1001-1009\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642021092205006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.53106/160792642021092205006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

频谱高效频分复用(SEFDM)是一种带宽压缩的非正交多载波通信方案,与正交频分复用系统相比,它提高了频谱效率。正交性的损失导致自引入的载波间干扰(ICI)使均衡器设计复杂化。在这项工作中,提出了一种基于深度学习(DL)的SEFDM均衡方案来表征ICI并检测传输的信息比特。基于DL的均衡方案使用随机生成的数据进行线性训练,然后在线部署。通过大量的数值模拟测试了均衡方案的性能。结果表明,在加性高斯白噪声(AWGN)信道下,所提出的均衡方案在误码率(BER)方面优于基于线性均衡的均衡方案,如迫零(ZF)、最小均方误差(MMSE)和截断奇异值分解(TSVD)。特别是对于BPSK,即使压缩比为0.7,未编码的BER性能也接近传统的OFDM,这节省了30%的带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Based Equalization Scheme for Bandwidthcompressed Non-orthogonal Multicarrier Communication
Spectrally efficient frequency division multiplexing (SEFDM) is a bandwidth-compressed non-orthogonal multicarrier communication scheme, which provides improved spectral efficiency compared to orthogonal frequency division multiplexing (OFDM) system. The loss of orthogonality yields the self-introduced inter-carrier interference (ICI) complicating the equalizer design. In this work, a deep learning (DL) -based SEFDM equalization scheme is proposed to characterize the ICI and to detect the transmitted information bits. The DL-based equalization scheme is trained offline using randomly-generated data and then deployed online. The performance of the equalization scheme is tested by extensive numerical simulations. The results show that the proposed equalization scheme outperforms the linear equalization based equalization scheme, such as zero forcing (ZF), minimum mean squared error (MMSE) and truncated singular value decomposition (TSVD), under additive white Gaussian noise (AWGN) channel in terms of the bit-error rate (BER). Especially for BPSK, the uncoded BER performance approaches the traditional OFDM even for the compression ratio of 0.7, which saves the bandwidth by 30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Internet Technology
Journal of Internet Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
3.20
自引率
18.80%
发文量
112
审稿时长
13.8 months
期刊介绍: The Journal of Internet Technology accepts original technical articles in all disciplines of Internet Technology & Applications. Manuscripts are submitted for review with the understanding that they have not been published elsewhere. Topics of interest to JIT include but not limited to: Broadband Networks Electronic service systems (Internet, Intranet, Extranet, E-Commerce, E-Business) Network Management Network Operating System (NOS) Intelligent systems engineering Government or Staff Jobs Computerization National Information Policy Multimedia systems Network Behavior Modeling Wireless/Satellite Communication Digital Library Distance Learning Internet/WWW Applications Telecommunication Networks Security in Networks and Systems Cloud Computing Internet of Things (IoT) IPv6 related topics are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信