{"title":"幂置换的Boomerang一致性与上的代数曲线𝔽2n","authors":"Sihem Mesnager, F. Özbudak","doi":"10.1515/advgeom-2022-0026","DOIUrl":null,"url":null,"abstract":"Abstract We obtain the Boomerang Connectivity Table of power permutations F(x)=x2m−1 of F2n $F(x)={{x}^{{{2}^{m}}-1}}\\text{ }\\!\\!~\\!\\!\\text{ of }\\!\\!~\\!\\!\\text{ }{{\\mathbb{F}}_{{{2}^{n}}}}$with m ∈ { 3,n−12,n+12,n−2 }. $\\left\\{ 3,\\frac{n-1}{2},\\frac{n+1}{2},n-2 \\right\\}.$In particular, we obtain the Boomerang uniformity and the Boomerang uniformity set of F(x) at b∈F2n∖F2. $F(x)\\text{ }\\!\\!~\\!\\!\\text{ at }\\!\\!~\\!\\!\\text{ }b\\in {{\\mathbb{F}}_{{{2}^{n}}}}\\setminus {{\\mathbb{F}}_{2}}.$Moreover we determine the complete Boomerang distribution spectrum of F(x) using the number of rational points of certain concrete algebraic curves over F2n. ${{\\mathbb{F}}_{{{2}^{n}}}}.$We also determine the distribution spectra of Boomerang uniformities explicitly.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"23 1","pages":"107 - 134"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boomerang uniformity of power permutations and algebraic curves over 𝔽2n\",\"authors\":\"Sihem Mesnager, F. Özbudak\",\"doi\":\"10.1515/advgeom-2022-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We obtain the Boomerang Connectivity Table of power permutations F(x)=x2m−1 of F2n $F(x)={{x}^{{{2}^{m}}-1}}\\\\text{ }\\\\!\\\\!~\\\\!\\\\!\\\\text{ of }\\\\!\\\\!~\\\\!\\\\!\\\\text{ }{{\\\\mathbb{F}}_{{{2}^{n}}}}$with m ∈ { 3,n−12,n+12,n−2 }. $\\\\left\\\\{ 3,\\\\frac{n-1}{2},\\\\frac{n+1}{2},n-2 \\\\right\\\\}.$In particular, we obtain the Boomerang uniformity and the Boomerang uniformity set of F(x) at b∈F2n∖F2. $F(x)\\\\text{ }\\\\!\\\\!~\\\\!\\\\!\\\\text{ at }\\\\!\\\\!~\\\\!\\\\!\\\\text{ }b\\\\in {{\\\\mathbb{F}}_{{{2}^{n}}}}\\\\setminus {{\\\\mathbb{F}}_{2}}.$Moreover we determine the complete Boomerang distribution spectrum of F(x) using the number of rational points of certain concrete algebraic curves over F2n. ${{\\\\mathbb{F}}_{{{2}^{n}}}}.$We also determine the distribution spectra of Boomerang uniformities explicitly.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"23 1\",\"pages\":\"107 - 134\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2022-0026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2022-0026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
得到了F2n $F(x)={{x}^{{{2}^{m}}-1}}\text{ }\!\!~\!\!\text{ of }\!\!~\!\!\text{ }{{\mathbb{F}}_{{{2}^{n}}}}$中m∈{3,n−12,n+12,n−2的幂置换F(x)=x2m−}1的回旋连通性表。$\left\{ 3,\frac{n-1}{2},\frac{n+1}{2},n-2 \right\}.$特别地,我们得到了F(x)在b∈F2n∈F2处的Boomerang均匀性和Boomerang均匀性集。$F(x)\text{ }\!\!~\!\!\text{ at }\!\!~\!\!\text{ }b\in {{\mathbb{F}}_{{{2}^{n}}}}\setminus {{\mathbb{F}}_{2}}.$此外,我们还利用F2n上某些具体代数曲线的有理点数确定了F(x)的完整回旋镖分布谱。${{\mathbb{F}}_{{{2}^{n}}}}.$我们还明确地确定了回飞镖均匀性的分布谱。
Boomerang uniformity of power permutations and algebraic curves over 𝔽2n
Abstract We obtain the Boomerang Connectivity Table of power permutations F(x)=x2m−1 of F2n $F(x)={{x}^{{{2}^{m}}-1}}\text{ }\!\!~\!\!\text{ of }\!\!~\!\!\text{ }{{\mathbb{F}}_{{{2}^{n}}}}$with m ∈ { 3,n−12,n+12,n−2 }. $\left\{ 3,\frac{n-1}{2},\frac{n+1}{2},n-2 \right\}.$In particular, we obtain the Boomerang uniformity and the Boomerang uniformity set of F(x) at b∈F2n∖F2. $F(x)\text{ }\!\!~\!\!\text{ at }\!\!~\!\!\text{ }b\in {{\mathbb{F}}_{{{2}^{n}}}}\setminus {{\mathbb{F}}_{2}}.$Moreover we determine the complete Boomerang distribution spectrum of F(x) using the number of rational points of certain concrete algebraic curves over F2n. ${{\mathbb{F}}_{{{2}^{n}}}}.$We also determine the distribution spectra of Boomerang uniformities explicitly.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.