钠离子电池:它能与锂离子竞争吗?

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Haegyeom Kim*, 
{"title":"钠离子电池:它能与锂离子竞争吗?","authors":"Haegyeom Kim*,&nbsp;","doi":"10.1021/acsmaterialsau.3c00049","DOIUrl":null,"url":null,"abstract":"<p >As concerns about the availability of mineral resources for lithium-ion batteries (LIBs) arise and demands for large-scale energy storage systems rapidly increase, non-LIB technologies have been extensively explored as low-cost alternatives. Among the various candidates, sodium-ion batteries (SIBs) have been the most widely studied, as they avoid the use of expensive and less abundant elements such as lithium, cobalt, and nickel while also sharing similar operating principles with LIBs. In this Perspective, we discuss why SIBs hold great promise and can act as competitors to lithium-ion technology. In addition, the remaining challenges and future research directions are highlighted, focusing on cathode developments and the use of SIBs in large-scale applications, including electric vehicles and stationary energy storage.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"3 6","pages":"571–575"},"PeriodicalIF":5.7000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00049","citationCount":"2","resultStr":"{\"title\":\"Sodium-Ion Battery: Can It Compete with Li-Ion?\",\"authors\":\"Haegyeom Kim*,&nbsp;\",\"doi\":\"10.1021/acsmaterialsau.3c00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As concerns about the availability of mineral resources for lithium-ion batteries (LIBs) arise and demands for large-scale energy storage systems rapidly increase, non-LIB technologies have been extensively explored as low-cost alternatives. Among the various candidates, sodium-ion batteries (SIBs) have been the most widely studied, as they avoid the use of expensive and less abundant elements such as lithium, cobalt, and nickel while also sharing similar operating principles with LIBs. In this Perspective, we discuss why SIBs hold great promise and can act as competitors to lithium-ion technology. In addition, the remaining challenges and future research directions are highlighted, focusing on cathode developments and the use of SIBs in large-scale applications, including electric vehicles and stationary energy storage.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"3 6\",\"pages\":\"571–575\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00049\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

随着人们对锂离子电池(lib)矿物资源可用性的担忧以及对大规模储能系统的需求迅速增加,非锂离子电池技术作为低成本的替代方案得到了广泛的探索。在各种候选电池中,钠离子电池(sib)得到了最广泛的研究,因为它们避免了使用昂贵且储量较少的元素,如锂、钴和镍,同时也与锂离子电池具有相似的工作原理。在这个观点中,我们讨论了为什么sib具有巨大的前景,并且可以作为锂离子技术的竞争对手。此外,还强调了剩余的挑战和未来的研究方向,重点是阴极的发展和sib在大规模应用中的应用,包括电动汽车和固定式储能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sodium-Ion Battery: Can It Compete with Li-Ion?

Sodium-Ion Battery: Can It Compete with Li-Ion?

As concerns about the availability of mineral resources for lithium-ion batteries (LIBs) arise and demands for large-scale energy storage systems rapidly increase, non-LIB technologies have been extensively explored as low-cost alternatives. Among the various candidates, sodium-ion batteries (SIBs) have been the most widely studied, as they avoid the use of expensive and less abundant elements such as lithium, cobalt, and nickel while also sharing similar operating principles with LIBs. In this Perspective, we discuss why SIBs hold great promise and can act as competitors to lithium-ion technology. In addition, the remaining challenges and future research directions are highlighted, focusing on cathode developments and the use of SIBs in large-scale applications, including electric vehicles and stationary energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信