广义多重背包问题的有效数学求解

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yassine Adouani, B. Jarboui, Malek Masmoudi
{"title":"广义多重背包问题的有效数学求解","authors":"Yassine Adouani, B. Jarboui, Malek Masmoudi","doi":"10.1504/ejie.2020.109906","DOIUrl":null,"url":null,"abstract":"This paper introduces a new variant of the knapsack problem with setup (KPS). We refer to it as the generalised multiple knapsack problem with setup (GMKPS). GMKPS originates from industrial production problems where the items are divided into classes and processed in multiple periods. We refer to the particular case where items from the same class cannot be processed in more than one period as the multiple knapsack problem with setup (MKPS). First, we provide mathematical formulations of GMKPS and MKPS and provide an upper bound expression for the knapsack problem. We then propose a matheuristic that combines variable neighbourhood descent (VND) with integer programming (IP). We consider local search techniques to assign classes to knapsacks and apply the IP to select the items in each knapsack. Computational experiments on randomly generated instances show the efficiency of our matheuristic in comparison to the direct use of a commercial solver. [Received: 4 March 2018; Revised: 1 June 2019; Revised: 12 July 2019; Revised: 22 November 2019; Accepted: 6 January 2020]","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ejie.2020.109906","citationCount":"8","resultStr":"{\"title\":\"Efficient matheuristic for the generalised multiple knapsack problem with setup\",\"authors\":\"Yassine Adouani, B. Jarboui, Malek Masmoudi\",\"doi\":\"10.1504/ejie.2020.109906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new variant of the knapsack problem with setup (KPS). We refer to it as the generalised multiple knapsack problem with setup (GMKPS). GMKPS originates from industrial production problems where the items are divided into classes and processed in multiple periods. We refer to the particular case where items from the same class cannot be processed in more than one period as the multiple knapsack problem with setup (MKPS). First, we provide mathematical formulations of GMKPS and MKPS and provide an upper bound expression for the knapsack problem. We then propose a matheuristic that combines variable neighbourhood descent (VND) with integer programming (IP). We consider local search techniques to assign classes to knapsacks and apply the IP to select the items in each knapsack. Computational experiments on randomly generated instances show the efficiency of our matheuristic in comparison to the direct use of a commercial solver. [Received: 4 March 2018; Revised: 1 June 2019; Revised: 12 July 2019; Revised: 22 November 2019; Accepted: 6 January 2020]\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ejie.2020.109906\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/ejie.2020.109906\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/ejie.2020.109906","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了带设置的背包问题(KPS)的一种新的变体。我们将其称为具有设置的广义多背包问题(GMKPS)。GMKPS源于工业生产问题,其中项目被划分为类别并在多个时期进行处理。我们将同一类别的物品不能在一个以上的时间段内处理的特殊情况称为带设置的多背包问题(MKPS)。首先,我们给出了GMKPS和MKPS的数学公式,并给出了背包问题的上界表达式。然后,我们提出了一种将可变邻域下降(VND)与整数规划(IP)相结合的数学方法。我们考虑了本地搜索技术来为背包分配类,并应用IP来选择每个背包中的物品。在随机生成的实例上进行的计算实验表明,与直接使用商业求解器相比,我们的数学运算效率很高。【接收日期:2018年3月4日;修订日期:2019年6月1日;修订时间:2019年7月12日;修订:2019年11月22日;接受日期:2020年1月6日】
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient matheuristic for the generalised multiple knapsack problem with setup
This paper introduces a new variant of the knapsack problem with setup (KPS). We refer to it as the generalised multiple knapsack problem with setup (GMKPS). GMKPS originates from industrial production problems where the items are divided into classes and processed in multiple periods. We refer to the particular case where items from the same class cannot be processed in more than one period as the multiple knapsack problem with setup (MKPS). First, we provide mathematical formulations of GMKPS and MKPS and provide an upper bound expression for the knapsack problem. We then propose a matheuristic that combines variable neighbourhood descent (VND) with integer programming (IP). We consider local search techniques to assign classes to knapsacks and apply the IP to select the items in each knapsack. Computational experiments on randomly generated instances show the efficiency of our matheuristic in comparison to the direct use of a commercial solver. [Received: 4 March 2018; Revised: 1 June 2019; Revised: 12 July 2019; Revised: 22 November 2019; Accepted: 6 January 2020]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信