负能级和棱柱晶体的扭曲微分算子

IF 0.8 Q2 MATHEMATICS
Michel Gros, B. L. Stum, Adolfo Quir'os
{"title":"负能级和棱柱晶体的扭曲微分算子","authors":"Michel Gros, B. L. Stum, Adolfo Quir'os","doi":"10.2140/tunis.2022.4.19","DOIUrl":null,"url":null,"abstract":"We introduce twisted differential calculus of negative level and prove a descent theorem: Frobenius pullback provides an equivalence between finitely presented modules endowed with a topologically quasi-nilpotent twisted connection of level minus one and those of level zero. We explain how this is related to the existence of a Cartier operator on prismatic crystals. For the sake of readability, we limit ourselves to the case of dimension one.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Twisted differential operators of negative level and prismatic crystals\",\"authors\":\"Michel Gros, B. L. Stum, Adolfo Quir'os\",\"doi\":\"10.2140/tunis.2022.4.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce twisted differential calculus of negative level and prove a descent theorem: Frobenius pullback provides an equivalence between finitely presented modules endowed with a topologically quasi-nilpotent twisted connection of level minus one and those of level zero. We explain how this is related to the existence of a Cartier operator on prismatic crystals. For the sake of readability, we limit ourselves to the case of dimension one.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2022.4.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

引入负能级的扭曲微分,证明了一个下降定理:Frobenius回拉给出了具有拓扑拟幂零的负能级扭曲连接的有限呈现模与零能级扭曲连接之间的等价。我们解释了这与棱镜晶体上卡地亚算子的存在是如何相关的。为了便于阅读,我们将自己限制在维度1的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted differential operators of negative level and prismatic crystals
We introduce twisted differential calculus of negative level and prove a descent theorem: Frobenius pullback provides an equivalence between finitely presented modules endowed with a topologically quasi-nilpotent twisted connection of level minus one and those of level zero. We explain how this is related to the existence of a Cartier operator on prismatic crystals. For the sake of readability, we limit ourselves to the case of dimension one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信