{"title":"负能级和棱柱晶体的扭曲微分算子","authors":"Michel Gros, B. L. Stum, Adolfo Quir'os","doi":"10.2140/tunis.2022.4.19","DOIUrl":null,"url":null,"abstract":"We introduce twisted differential calculus of negative level and prove a descent theorem: Frobenius pullback provides an equivalence between finitely presented modules endowed with a topologically quasi-nilpotent twisted connection of level minus one and those of level zero. We explain how this is related to the existence of a Cartier operator on prismatic crystals. For the sake of readability, we limit ourselves to the case of dimension one.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Twisted differential operators of negative level and prismatic crystals\",\"authors\":\"Michel Gros, B. L. Stum, Adolfo Quir'os\",\"doi\":\"10.2140/tunis.2022.4.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce twisted differential calculus of negative level and prove a descent theorem: Frobenius pullback provides an equivalence between finitely presented modules endowed with a topologically quasi-nilpotent twisted connection of level minus one and those of level zero. We explain how this is related to the existence of a Cartier operator on prismatic crystals. For the sake of readability, we limit ourselves to the case of dimension one.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2022.4.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Twisted differential operators of negative level and prismatic crystals
We introduce twisted differential calculus of negative level and prove a descent theorem: Frobenius pullback provides an equivalence between finitely presented modules endowed with a topologically quasi-nilpotent twisted connection of level minus one and those of level zero. We explain how this is related to the existence of a Cartier operator on prismatic crystals. For the sake of readability, we limit ourselves to the case of dimension one.