一种机器学习方法在未知的情况下同时检测考生和项目中的先验知识

IF 2.7 4区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Yiqin Pan, James A. Wollack
{"title":"一种机器学习方法在未知的情况下同时检测考生和项目中的先验知识","authors":"Yiqin Pan,&nbsp;James A. Wollack","doi":"10.1111/emip.12543","DOIUrl":null,"url":null,"abstract":"<p>Pan and Wollack (PW) proposed a machine learning method to detect compromised items. We extend the work of PW to an approach detecting compromised items and examinees with item preknowledge simultaneously and draw on ideas in ensemble learning to relax several limitations in the work of PW. The suggested approach also provides a confidence score, which is based on an autoencoder to represent our confidence that the detection result truly corresponds to item preknowledge. Simulation studies indicate that the proposed approach performs well in the detection of item preknowledge, and the confidence score can provide helpful information for users.</p>","PeriodicalId":47345,"journal":{"name":"Educational Measurement-Issues and Practice","volume":"42 1","pages":"76-98"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Machine Learning Approach for the Simultaneous Detection of Preknowledge in Examinees and Items When Both Are Unknown\",\"authors\":\"Yiqin Pan,&nbsp;James A. Wollack\",\"doi\":\"10.1111/emip.12543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pan and Wollack (PW) proposed a machine learning method to detect compromised items. We extend the work of PW to an approach detecting compromised items and examinees with item preknowledge simultaneously and draw on ideas in ensemble learning to relax several limitations in the work of PW. The suggested approach also provides a confidence score, which is based on an autoencoder to represent our confidence that the detection result truly corresponds to item preknowledge. Simulation studies indicate that the proposed approach performs well in the detection of item preknowledge, and the confidence score can provide helpful information for users.</p>\",\"PeriodicalId\":47345,\"journal\":{\"name\":\"Educational Measurement-Issues and Practice\",\"volume\":\"42 1\",\"pages\":\"76-98\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational Measurement-Issues and Practice\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/emip.12543\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Measurement-Issues and Practice","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/emip.12543","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

摘要

Pan和Wollack (PW)提出了一种机器学习方法来检测受损物品。我们将PW的工作扩展到一种同时检测折衷项目和具有项目预知的考生的方法,并借鉴集成学习的思想来放宽PW工作中的几个限制。建议的方法还提供了一个置信度评分,该评分基于自动编码器来表示我们对检测结果真正对应于项目预知的置信度。仿真研究表明,该方法在项目预知检测中表现良好,置信度得分可以为用户提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Approach for the Simultaneous Detection of Preknowledge in Examinees and Items When Both Are Unknown

Pan and Wollack (PW) proposed a machine learning method to detect compromised items. We extend the work of PW to an approach detecting compromised items and examinees with item preknowledge simultaneously and draw on ideas in ensemble learning to relax several limitations in the work of PW. The suggested approach also provides a confidence score, which is based on an autoencoder to represent our confidence that the detection result truly corresponds to item preknowledge. Simulation studies indicate that the proposed approach performs well in the detection of item preknowledge, and the confidence score can provide helpful information for users.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
15.00%
发文量
47
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信