Kähler-Einstein范诺22度的三倍

IF 0.9 1区 数学 Q2 MATHEMATICS
I. Cheltsov, C. Shramov
{"title":"Kähler-Einstein范诺22度的三倍","authors":"I. Cheltsov, C. Shramov","doi":"10.1090/jag/812","DOIUrl":null,"url":null,"abstract":"We study the problem of existence of Kähler–Einstein metrics on smooth Fano threefolds of Picard rank one and anticanonical degree \n\n \n 22\n 22\n \n\n that admit a faithful action of the multiplicative group \n\n \n \n \n C\n \n ∗\n \n \\mathbb {C}^\\ast\n \n\n. We prove that, with the possible exception of two explicitly described cases, all such smooth Fano threefolds are Kähler–Einstein.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Kähler–Einstein Fano threefolds of degree 22\",\"authors\":\"I. Cheltsov, C. Shramov\",\"doi\":\"10.1090/jag/812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of existence of Kähler–Einstein metrics on smooth Fano threefolds of Picard rank one and anticanonical degree \\n\\n \\n 22\\n 22\\n \\n\\n that admit a faithful action of the multiplicative group \\n\\n \\n \\n \\n C\\n \\n ∗\\n \\n \\\\mathbb {C}^\\\\ast\\n \\n\\n. We prove that, with the possible exception of two explicitly described cases, all such smooth Fano threefolds are Kähler–Einstein.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/812\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/812","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

研究了Picard秩为1、反正则度为2222的光滑Fano三重矩阵上Kähler-Einstein度量的存在性问题,该三重矩阵承认乘法群C∗\mathbb {C}^\ast的忠实作用。我们证明,除了两种明确描述的情况外,所有这些光滑的法诺三倍都是Kähler-Einstein。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kähler–Einstein Fano threefolds of degree 22
We study the problem of existence of Kähler–Einstein metrics on smooth Fano threefolds of Picard rank one and anticanonical degree 22 22 that admit a faithful action of the multiplicative group C ∗ \mathbb {C}^\ast . We prove that, with the possible exception of two explicitly described cases, all such smooth Fano threefolds are Kähler–Einstein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信