Banach空间中具有无界交换子的非自治微分方程的指数稳定性条件

IF 0.4 4区 数学 Q4 MATHEMATICS
M. Gil'
{"title":"Banach空间中具有无界交换子的非自治微分方程的指数稳定性条件","authors":"M. Gil'","doi":"10.21136/CMJ.2023.0188-21","DOIUrl":null,"url":null,"abstract":"We consider the equation dy(t)/dt = (A + B(t))y(t) (t ≽ 0), where A is the generator of an analytic semigroup (eAt)t≽0 on a Banach space χ, B(t) is a variable bounded operator in χ. It is assumed that the commutator K(t) = AB(t) − B(t)A has the following property: there is a linear operator S having a bounded left-inverse operator Sl−1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$S_l^{ - 1}$$\\end{document} such that ∥SeAt∥ is integrable and the operator K(t)Sl−1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K\\left( t \\right)S_l^{ - 1}$$\\end{document} is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"73 1","pages":"355 - 366"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space\",\"authors\":\"M. Gil'\",\"doi\":\"10.21136/CMJ.2023.0188-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the equation dy(t)/dt = (A + B(t))y(t) (t ≽ 0), where A is the generator of an analytic semigroup (eAt)t≽0 on a Banach space χ, B(t) is a variable bounded operator in χ. It is assumed that the commutator K(t) = AB(t) − B(t)A has the following property: there is a linear operator S having a bounded left-inverse operator Sl−1\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$S_l^{ - 1}$$\\\\end{document} such that ∥SeAt∥ is integrable and the operator K(t)Sl−1\\\\documentclass[12pt]{minimal} \\\\usepackage{amsmath} \\\\usepackage{wasysym} \\\\usepackage{amsfonts} \\\\usepackage{amssymb} \\\\usepackage{amsbsy} \\\\usepackage{mathrsfs} \\\\usepackage{upgreek} \\\\setlength{\\\\oddsidemargin}{-69pt} \\\\begin{document}$$K\\\\left( t \\\\right)S_l^{ - 1}$$\\\\end{document} is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"73 1\",\"pages\":\"355 - 366\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/CMJ.2023.0188-21\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/CMJ.2023.0188-21","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑方程dy(t)/dt=(A+B(t))y(t)(t≽0),其中A是Banach空间χ上分析半群(eAt)t≴0的生成元,B(t)是χ中的可变有界算子。假设交换子K(t)=AB(t)−B(t)A具有以下性质:存在一个线性算子S,它具有一个有界左逆算子Sl−1\documentclass[12pt]{minimal}\usepackage{amsmath}\ usepackage{wasysym}\ use package{amsfonts}\usapackage{amssymb}\ usapackage{amsbsy}\usepackage{mathrsfs}\ userpackage{upgeek}\setlength{\oddsidemargin}{-69pt}\ begin{document}$S_l^{-1}$$\end{document},使得‖SeAt‖是可积的,并且运算符K(t)Sl−1\documentclass[12pt]{minimal}\usepackage{amsmath}\use package{{wasysym}\ usepackage{amsfonts}\usapackage{amssymb}\ use package{amsbsy}\usepackage{mathrsfs}\ usapackage{upgek}\setlength{\oddsedmargin}{-69pt}\begin{document}$K\left(t\right)S_l^{-1}$\end{document}是有界的。在这些条件下,导出了指数稳定性检验。作为一个例子,我们考虑一个抛物型方程的耦合系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability conditions for non-autonomous differential equations with unbounded commutators in a Banach space
We consider the equation dy(t)/dt = (A + B(t))y(t) (t ≽ 0), where A is the generator of an analytic semigroup (eAt)t≽0 on a Banach space χ, B(t) is a variable bounded operator in χ. It is assumed that the commutator K(t) = AB(t) − B(t)A has the following property: there is a linear operator S having a bounded left-inverse operator Sl−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_l^{ - 1}$$\end{document} such that ∥SeAt∥ is integrable and the operator K(t)Sl−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\left( t \right)S_l^{ - 1}$$\end{document} is bounded. Under these conditions an exponential stability test is derived. As an example we consider a coupled system of parabolic equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信