影响学生科学成绩的因素:在PISA 2015数据集中使用基尼- bma方法的应用

IF 0.7 Q3 ECONOMICS
Anastasia Dimiski
{"title":"影响学生科学成绩的因素:在PISA 2015数据集中使用基尼- bma方法的应用","authors":"Anastasia Dimiski","doi":"10.15353/rea.v13i2.1948","DOIUrl":null,"url":null,"abstract":"Existing theoretical and empirical evidence on the determinants of students’ performance reveals a direct link between pre-primary education and achievement test scores in primary school. Relying on the first-of-its-kind 2015 wave data from the Programme of International Student Assessment (PISA), the present study analyses the associations between students’ performance in science and a broad set of variables, including regressors that proxy pre-primary education. Employing a Gini Regression Bayesian Model Averaging (BMA) approach to account for model uncertainty, it is found that non-attendance in pre-primary education is a robust determinant with a negative impact on students’ performance in science. This result is confirmed both under Gini-BMA and OLS-BMA methodology.","PeriodicalId":42350,"journal":{"name":"Review of Economic Analysis","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset\",\"authors\":\"Anastasia Dimiski\",\"doi\":\"10.15353/rea.v13i2.1948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing theoretical and empirical evidence on the determinants of students’ performance reveals a direct link between pre-primary education and achievement test scores in primary school. Relying on the first-of-its-kind 2015 wave data from the Programme of International Student Assessment (PISA), the present study analyses the associations between students’ performance in science and a broad set of variables, including regressors that proxy pre-primary education. Employing a Gini Regression Bayesian Model Averaging (BMA) approach to account for model uncertainty, it is found that non-attendance in pre-primary education is a robust determinant with a negative impact on students’ performance in science. This result is confirmed both under Gini-BMA and OLS-BMA methodology.\",\"PeriodicalId\":42350,\"journal\":{\"name\":\"Review of Economic Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Economic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15353/rea.v13i2.1948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Economic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15353/rea.v13i2.1948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

关于学生表现决定因素的现有理论和实证证据表明,学前教育与小学成绩测试成绩之间存在直接联系。基于2015年国际学生评估项目(PISA)的首波数据,本研究分析了学生在科学方面的表现与一系列广泛变量之间的关系,包括代表学前教育的回归因子。采用基尼回归贝叶斯模型平均(BMA)方法来解释模型不确定性,发现学前教育缺勤是一个强大的决定因素,对学生的科学成绩产生负面影响。这一结果在基尼- bma和OLS-BMA方法下都得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factors that affect Students’ performance in Science: An application using Gini-BMA methodology in PISA 2015 dataset
Existing theoretical and empirical evidence on the determinants of students’ performance reveals a direct link between pre-primary education and achievement test scores in primary school. Relying on the first-of-its-kind 2015 wave data from the Programme of International Student Assessment (PISA), the present study analyses the associations between students’ performance in science and a broad set of variables, including regressors that proxy pre-primary education. Employing a Gini Regression Bayesian Model Averaging (BMA) approach to account for model uncertainty, it is found that non-attendance in pre-primary education is a robust determinant with a negative impact on students’ performance in science. This result is confirmed both under Gini-BMA and OLS-BMA methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
10
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信