选择函数的理性稳定性

IF 0.5 4区 经济学 Q4 ECONOMICS
Josep E. Peris, Begoña Subiza
{"title":"选择函数的理性稳定性","authors":"Josep E. Peris,&nbsp;Begoña Subiza","doi":"10.1111/ijet.12369","DOIUrl":null,"url":null,"abstract":"<p>Two independent approaches have been used to analyze choices. A prominent notion is rationalizability: individuals choose maximizing binary relations. An alternative is to analyze choices in terms of standards of behavior with the notion of von Neumann–Morgenstern (vNM)-stability. We introduce a new concept (<math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>-</mo>\n </mrow>\n <annotation> $r \\mbox{-} $</annotation>\n </semantics></math>stability) that in turn extends the notion of stability and rationality. Our main result establishes that every rationalizable choice function is <math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>-</mo>\n </mrow>\n <annotation> $r \\mbox{-} $</annotation>\n </semantics></math>stable and every vNM-stable choice has an <math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>-</mo>\n </mrow>\n <annotation> $r \\mbox{-} $</annotation>\n </semantics></math>stable selection. An appealing property of <math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>-</mo>\n </mrow>\n <annotation> $r \\mbox{-} $</annotation>\n </semantics></math>stability is that well-known solution concepts (top cycle, uncovered set, …) are <math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>-</mo>\n </mrow>\n <annotation> $r \\mbox{-} $</annotation>\n </semantics></math>stable, while they are neither rationalizable nor vNM-stable.</p>","PeriodicalId":44551,"journal":{"name":"International Journal of Economic Theory","volume":"19 3","pages":"580-598"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijet.12369","citationCount":"0","resultStr":"{\"title\":\"Rational stability of choice functions\",\"authors\":\"Josep E. Peris,&nbsp;Begoña Subiza\",\"doi\":\"10.1111/ijet.12369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two independent approaches have been used to analyze choices. A prominent notion is rationalizability: individuals choose maximizing binary relations. An alternative is to analyze choices in terms of standards of behavior with the notion of von Neumann–Morgenstern (vNM)-stability. We introduce a new concept (<math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $r \\\\mbox{-} $</annotation>\\n </semantics></math>stability) that in turn extends the notion of stability and rationality. Our main result establishes that every rationalizable choice function is <math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $r \\\\mbox{-} $</annotation>\\n </semantics></math>stable and every vNM-stable choice has an <math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $r \\\\mbox{-} $</annotation>\\n </semantics></math>stable selection. An appealing property of <math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $r \\\\mbox{-} $</annotation>\\n </semantics></math>stability is that well-known solution concepts (top cycle, uncovered set, …) are <math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $r \\\\mbox{-} $</annotation>\\n </semantics></math>stable, while they are neither rationalizable nor vNM-stable.</p>\",\"PeriodicalId\":44551,\"journal\":{\"name\":\"International Journal of Economic Theory\",\"volume\":\"19 3\",\"pages\":\"580-598\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijet.12369\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Economic Theory\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijet.12369\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Economic Theory","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijet.12369","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

两种独立的方法被用来分析选择。一个突出的概念是理性化:个体选择最大化二元关系。另一种选择是用冯·诺伊曼-摩根斯坦(vNM)稳定性的概念来分析行为标准方面的选择。我们引入了一个新的概念(r - $r \mbox{-} $稳定性),从而扩展了稳定性和合理性的概念。我们的主要结果证明了每一个可合理化的选择函数都是r - $r \mbox{-} $稳定的,每一个vnm稳定的选择都有一个r - $r \mbox{-} $稳定的选择。r - $r \mbox{-} $稳定性的一个吸引人的性质是,众所周知的解概念(顶循环,未覆盖集,…)是r - $r \mbox{-} $稳定的,但它们既不是可合理化的,也不是vnm稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational stability of choice functions

Rational stability of choice functions

Two independent approaches have been used to analyze choices. A prominent notion is rationalizability: individuals choose maximizing binary relations. An alternative is to analyze choices in terms of standards of behavior with the notion of von Neumann–Morgenstern (vNM)-stability. We introduce a new concept ( r - $r \mbox{-} $ stability) that in turn extends the notion of stability and rationality. Our main result establishes that every rationalizable choice function is r - $r \mbox{-} $ stable and every vNM-stable choice has an r - $r \mbox{-} $ stable selection. An appealing property of r - $r \mbox{-} $ stability is that well-known solution concepts (top cycle, uncovered set, …) are r - $r \mbox{-} $ stable, while they are neither rationalizable nor vNM-stable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信