Fa Zheng, Bin Hu, Xiangwei Zheng, Cun Ji, Ji Bian, Xiaomei Yu
{"title":"基于动态微分熵和脑连接性特征的脑电情绪识别","authors":"Fa Zheng, Bin Hu, Xiangwei Zheng, Cun Ji, Ji Bian, Xiaomei Yu","doi":"10.1002/int.23096","DOIUrl":null,"url":null,"abstract":"<p>Emotion recognition has become a research focus in the brain–computer interface and cognitive neuroscience. Electroencephalogram (EEG) is employed for its advantages as accurate, objective, and noninvasive nature. However, many existing research only focus on extracting the time and frequency domain features of the EEG signals while failing to utilize the dynamic temporal changes and the positional relationships between different electrode channels. To fill this gap, we develop the dynamic differential entropy and brain connectivity features based EEG emotion recognition using linear graph convolutional network named DDELGCN. First, the dynamic differential entropy feature which represents the frequency domain feature as well as time domain feature is extracted based on the traditional differential entropy feature. Second, brain connectivity matrices are constructed by calculating the Pearson correlation coefficient, phase-locked value and transfer entropy, and then are used to denote the connectivity features of all electrode combinations. Finally, a linear graph convolutional network is customized and applied to aggregate the features from total electrode combinations and then classifies the emotional states, which consists of five layers, namely, an input layer, two linear graph convolutional layers, a fully connected layer, and a softmax layer. Extensive experiments show that the accuracies in the valence and arousal dimensions reach 90.88% and 91.13%, and the precision reaches 96.66% and 97.02% on the DEAP dataset, respectively. On the SEED dataset, the accuracy and precision reach 91.56% and 97.38%, respectively.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"37 12","pages":"12511-12533"},"PeriodicalIF":5.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamic differential entropy and brain connectivity features based EEG emotion recognition\",\"authors\":\"Fa Zheng, Bin Hu, Xiangwei Zheng, Cun Ji, Ji Bian, Xiaomei Yu\",\"doi\":\"10.1002/int.23096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emotion recognition has become a research focus in the brain–computer interface and cognitive neuroscience. Electroencephalogram (EEG) is employed for its advantages as accurate, objective, and noninvasive nature. However, many existing research only focus on extracting the time and frequency domain features of the EEG signals while failing to utilize the dynamic temporal changes and the positional relationships between different electrode channels. To fill this gap, we develop the dynamic differential entropy and brain connectivity features based EEG emotion recognition using linear graph convolutional network named DDELGCN. First, the dynamic differential entropy feature which represents the frequency domain feature as well as time domain feature is extracted based on the traditional differential entropy feature. Second, brain connectivity matrices are constructed by calculating the Pearson correlation coefficient, phase-locked value and transfer entropy, and then are used to denote the connectivity features of all electrode combinations. Finally, a linear graph convolutional network is customized and applied to aggregate the features from total electrode combinations and then classifies the emotional states, which consists of five layers, namely, an input layer, two linear graph convolutional layers, a fully connected layer, and a softmax layer. Extensive experiments show that the accuracies in the valence and arousal dimensions reach 90.88% and 91.13%, and the precision reaches 96.66% and 97.02% on the DEAP dataset, respectively. On the SEED dataset, the accuracy and precision reach 91.56% and 97.38%, respectively.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"37 12\",\"pages\":\"12511-12533\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/int.23096\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/int.23096","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dynamic differential entropy and brain connectivity features based EEG emotion recognition
Emotion recognition has become a research focus in the brain–computer interface and cognitive neuroscience. Electroencephalogram (EEG) is employed for its advantages as accurate, objective, and noninvasive nature. However, many existing research only focus on extracting the time and frequency domain features of the EEG signals while failing to utilize the dynamic temporal changes and the positional relationships between different electrode channels. To fill this gap, we develop the dynamic differential entropy and brain connectivity features based EEG emotion recognition using linear graph convolutional network named DDELGCN. First, the dynamic differential entropy feature which represents the frequency domain feature as well as time domain feature is extracted based on the traditional differential entropy feature. Second, brain connectivity matrices are constructed by calculating the Pearson correlation coefficient, phase-locked value and transfer entropy, and then are used to denote the connectivity features of all electrode combinations. Finally, a linear graph convolutional network is customized and applied to aggregate the features from total electrode combinations and then classifies the emotional states, which consists of five layers, namely, an input layer, two linear graph convolutional layers, a fully connected layer, and a softmax layer. Extensive experiments show that the accuracies in the valence and arousal dimensions reach 90.88% and 91.13%, and the precision reaches 96.66% and 97.02% on the DEAP dataset, respectively. On the SEED dataset, the accuracy and precision reach 91.56% and 97.38%, respectively.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.