Zhaobin Liu, J. Guo, Lei Chen, Yun Wei, Wei Huang, Jinde Cao
{"title":"车联网环境下动态路径引导对城市交通网络的影响","authors":"Zhaobin Liu, J. Guo, Lei Chen, Yun Wei, Wei Huang, Jinde Cao","doi":"10.18757/EJTIR.2019.19.2.4380","DOIUrl":null,"url":null,"abstract":"\n \n \nAlthough Connected Vehicle technology is developing rapidly, connected vehicles (CV) are going to mix with the traditional vehicles (i.e., non-connected vehicles) for a long time. The effects of deploying CV on urban traffic systems are actually not clear. The main objective of this study is to evaluate the potential effects of route guidance under connected vehicle environment on an urban traffic network in terms of traffic mobility and safety. Microscopic simulation approach is used to conduct CV environment simulation and the rolling horizon approach is used for information updating among the connected vehicles. Meanwhile, driving behavior is modeled through aggressiveness and awareness of drivers. Traffic mobility for the road network was measured by average trip time and average vehicle trip speed. A surrogate measure, i.e., the time-to-collision involved incident rate for one kilometer driven, was used to assess the safety of the road network. Based on a real urban traffic network, the impacts of market penetration levels of connected vehicles and information updating intervals were studied. Simulation results showed that market penetration level of connected vehicles has little impact on the mobility and safety of road network. In addition, according to the simulation conducted in this paper, shorter updating interval is shown to be likely to lead to better mobility, while the safety of road network is likely to decline, under the assumptions embraced in the simulation. By contrast, the simulation also showed that longer updating interval is likely to lead to better safety and decreased mobility. \n \n \n","PeriodicalId":46721,"journal":{"name":"European Journal of Transport and Infrastructure Research","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2019-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effect of dynamic route guidance on urban traffic network under Connected Vehicle environment\",\"authors\":\"Zhaobin Liu, J. Guo, Lei Chen, Yun Wei, Wei Huang, Jinde Cao\",\"doi\":\"10.18757/EJTIR.2019.19.2.4380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nAlthough Connected Vehicle technology is developing rapidly, connected vehicles (CV) are going to mix with the traditional vehicles (i.e., non-connected vehicles) for a long time. The effects of deploying CV on urban traffic systems are actually not clear. The main objective of this study is to evaluate the potential effects of route guidance under connected vehicle environment on an urban traffic network in terms of traffic mobility and safety. Microscopic simulation approach is used to conduct CV environment simulation and the rolling horizon approach is used for information updating among the connected vehicles. Meanwhile, driving behavior is modeled through aggressiveness and awareness of drivers. Traffic mobility for the road network was measured by average trip time and average vehicle trip speed. A surrogate measure, i.e., the time-to-collision involved incident rate for one kilometer driven, was used to assess the safety of the road network. Based on a real urban traffic network, the impacts of market penetration levels of connected vehicles and information updating intervals were studied. Simulation results showed that market penetration level of connected vehicles has little impact on the mobility and safety of road network. In addition, according to the simulation conducted in this paper, shorter updating interval is shown to be likely to lead to better mobility, while the safety of road network is likely to decline, under the assumptions embraced in the simulation. By contrast, the simulation also showed that longer updating interval is likely to lead to better safety and decreased mobility. \\n \\n \\n\",\"PeriodicalId\":46721,\"journal\":{\"name\":\"European Journal of Transport and Infrastructure Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2019-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Transport and Infrastructure Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18757/EJTIR.2019.19.2.4380\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Transport and Infrastructure Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18757/EJTIR.2019.19.2.4380","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Effect of dynamic route guidance on urban traffic network under Connected Vehicle environment
Although Connected Vehicle technology is developing rapidly, connected vehicles (CV) are going to mix with the traditional vehicles (i.e., non-connected vehicles) for a long time. The effects of deploying CV on urban traffic systems are actually not clear. The main objective of this study is to evaluate the potential effects of route guidance under connected vehicle environment on an urban traffic network in terms of traffic mobility and safety. Microscopic simulation approach is used to conduct CV environment simulation and the rolling horizon approach is used for information updating among the connected vehicles. Meanwhile, driving behavior is modeled through aggressiveness and awareness of drivers. Traffic mobility for the road network was measured by average trip time and average vehicle trip speed. A surrogate measure, i.e., the time-to-collision involved incident rate for one kilometer driven, was used to assess the safety of the road network. Based on a real urban traffic network, the impacts of market penetration levels of connected vehicles and information updating intervals were studied. Simulation results showed that market penetration level of connected vehicles has little impact on the mobility and safety of road network. In addition, according to the simulation conducted in this paper, shorter updating interval is shown to be likely to lead to better mobility, while the safety of road network is likely to decline, under the assumptions embraced in the simulation. By contrast, the simulation also showed that longer updating interval is likely to lead to better safety and decreased mobility.
期刊介绍:
The European Journal of Transport and Infrastructure Research (EJTIR) is a peer-reviewed scholarly journal, freely accessible through the internet. EJTIR aims to present the results of high-quality scientific research to a readership of academics, practitioners and policy-makers. It is our ambition to be the journal of choice in the field of transport and infrastructure both for readers and authors. To achieve this ambition, EJTIR distinguishes itself from other journals in its field, both through its scope and the way it is published.