长期迷走神经刺激实验的啮齿动物模型

Farid Yaghouby, Benjamin Shafer, Srikanth Vasudevan
{"title":"长期迷走神经刺激实验的啮齿动物模型","authors":"Farid Yaghouby, Benjamin Shafer, Srikanth Vasudevan","doi":"10.2217/bem-2019-0016","DOIUrl":null,"url":null,"abstract":"Aim: Investigations into the benefits of vagus nerve stimulation (VNS) using rodents have led to promising findings for treating clinical disorders. However, the majority of research has been limited to acute timelines. We developed a rodent model for longitudinal assessment of VNS and validated it with a long-term experiment incorporating continuous physiological monitoring. While the primary aim was not to investigate the effects of VNS on the cardiovascular system, we analyzed cardiovascular parameters to demonstrate the model's capabilities in a long-term stimulation-and-recording setup. Materials & methods: Rats were implanted with a cuff electrode around the cervical vagus nerve and electrocardiogram monitoring devices were implanted in the peritoneal cavity. We also designed a connector mount for seamless access to the cuff electrode for VNS in awake-behaving rats. Results & conclusion: Results signified easy-to-interface VNS system, electrode robustness and discernible physiological signals in a long-term setup. Analysis of the cardiovascular parameters revealed some transient effects during VNS. Our proposed model enables long-term VNS experiments along with physiological monitoring in unanesthetized rats.","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/bem-2019-0016","citationCount":"5","resultStr":"{\"title\":\"A rodent model for long-term vagus nerve stimulation experiments\",\"authors\":\"Farid Yaghouby, Benjamin Shafer, Srikanth Vasudevan\",\"doi\":\"10.2217/bem-2019-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Investigations into the benefits of vagus nerve stimulation (VNS) using rodents have led to promising findings for treating clinical disorders. However, the majority of research has been limited to acute timelines. We developed a rodent model for longitudinal assessment of VNS and validated it with a long-term experiment incorporating continuous physiological monitoring. While the primary aim was not to investigate the effects of VNS on the cardiovascular system, we analyzed cardiovascular parameters to demonstrate the model's capabilities in a long-term stimulation-and-recording setup. Materials & methods: Rats were implanted with a cuff electrode around the cervical vagus nerve and electrocardiogram monitoring devices were implanted in the peritoneal cavity. We also designed a connector mount for seamless access to the cuff electrode for VNS in awake-behaving rats. Results & conclusion: Results signified easy-to-interface VNS system, electrode robustness and discernible physiological signals in a long-term setup. Analysis of the cardiovascular parameters revealed some transient effects during VNS. Our proposed model enables long-term VNS experiments along with physiological monitoring in unanesthetized rats.\",\"PeriodicalId\":72364,\"journal\":{\"name\":\"Bioelectronics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2217/bem-2019-0016\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectronics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/bem-2019-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/bem-2019-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目的:研究啮齿类动物迷走神经刺激(VNS)的益处,为治疗临床疾病带来了有希望的发现。然而,大多数研究都局限于紧迫的时间线。我们开发了一个用于VNS纵向评估的啮齿动物模型,并通过结合连续生理监测的长期实验进行了验证。虽然主要目的不是研究VNS对心血管系统的影响,但我们分析了心血管参数,以证明该模型在长期刺激和记录设置中的能力。材料与方法:在大鼠颈迷走神经周围植入袖带电极,腹膜腔内植入心电图监测装置。我们还设计了一个连接器支架,用于在清醒行为的大鼠中无缝接入VNS的袖带电极。结果和结论:结果表明,在长期设置中,VNS系统易于接口,电极坚固耐用,生理信号清晰可辨。对心血管参数的分析揭示了VNS过程中的一些瞬态效应。我们提出的模型能够在未麻醉的大鼠中进行长期VNS实验和生理监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rodent model for long-term vagus nerve stimulation experiments
Aim: Investigations into the benefits of vagus nerve stimulation (VNS) using rodents have led to promising findings for treating clinical disorders. However, the majority of research has been limited to acute timelines. We developed a rodent model for longitudinal assessment of VNS and validated it with a long-term experiment incorporating continuous physiological monitoring. While the primary aim was not to investigate the effects of VNS on the cardiovascular system, we analyzed cardiovascular parameters to demonstrate the model's capabilities in a long-term stimulation-and-recording setup. Materials & methods: Rats were implanted with a cuff electrode around the cervical vagus nerve and electrocardiogram monitoring devices were implanted in the peritoneal cavity. We also designed a connector mount for seamless access to the cuff electrode for VNS in awake-behaving rats. Results & conclusion: Results signified easy-to-interface VNS system, electrode robustness and discernible physiological signals in a long-term setup. Analysis of the cardiovascular parameters revealed some transient effects during VNS. Our proposed model enables long-term VNS experiments along with physiological monitoring in unanesthetized rats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信