{"title":"多元素杂氧化物的结构多样性:半导体和超导杂阴离子材料综述","authors":"S. Baranets, Gregory M. Darone, S. Bobev","doi":"10.1515/zkri-2021-2079","DOIUrl":null,"url":null,"abstract":"Abstract Incorporating different anions with varied ionic sizes and charges is a rapidly growing approach to bring out unusual physical properties among various classes of solid-state materials, pnictides and chalcogenides in particular. This minireview is focused on hetero-anionic materials based on the pnictogens, which have been demonstrated to offer an impressive diversity of crystal chemistry and electronic structures. In addition, many pnictide oxides or oxypnictides, over the course of the last decade, have been shown to exhibit a broad spectrum of superconducting, magnetic, and semiconducting properties. However, the structural diversity of the mixed-anion materials is far greater than the several known structure types, or their variants, of the well-known layered superconductive materials. Therefore, with this treatise, we aim to provide a comprehensive overview of the crystal chemistry of pnictide oxides by recounting almost 40 different structures of such ternary and multinary compounds. In addition to the structural aspects, we also highlight some of the challenges associated with the synthesis, and briefly summarize reported, to date, physical properties of this remarkable class of solids.","PeriodicalId":48676,"journal":{"name":"Zeitschrift Fur Kristallographie-Crystalline Materials","volume":"237 1","pages":"1 - 26"},"PeriodicalIF":0.9000,"publicationDate":"2022-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials\",\"authors\":\"S. Baranets, Gregory M. Darone, S. Bobev\",\"doi\":\"10.1515/zkri-2021-2079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Incorporating different anions with varied ionic sizes and charges is a rapidly growing approach to bring out unusual physical properties among various classes of solid-state materials, pnictides and chalcogenides in particular. This minireview is focused on hetero-anionic materials based on the pnictogens, which have been demonstrated to offer an impressive diversity of crystal chemistry and electronic structures. In addition, many pnictide oxides or oxypnictides, over the course of the last decade, have been shown to exhibit a broad spectrum of superconducting, magnetic, and semiconducting properties. However, the structural diversity of the mixed-anion materials is far greater than the several known structure types, or their variants, of the well-known layered superconductive materials. Therefore, with this treatise, we aim to provide a comprehensive overview of the crystal chemistry of pnictide oxides by recounting almost 40 different structures of such ternary and multinary compounds. In addition to the structural aspects, we also highlight some of the challenges associated with the synthesis, and briefly summarize reported, to date, physical properties of this remarkable class of solids.\",\"PeriodicalId\":48676,\"journal\":{\"name\":\"Zeitschrift Fur Kristallographie-Crystalline Materials\",\"volume\":\"237 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Kristallographie-Crystalline Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/zkri-2021-2079\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Kristallographie-Crystalline Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/zkri-2021-2079","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Structural diversity among multinary pnictide oxides: a minireview focused on semiconducting and superconducting heteroanionic materials
Abstract Incorporating different anions with varied ionic sizes and charges is a rapidly growing approach to bring out unusual physical properties among various classes of solid-state materials, pnictides and chalcogenides in particular. This minireview is focused on hetero-anionic materials based on the pnictogens, which have been demonstrated to offer an impressive diversity of crystal chemistry and electronic structures. In addition, many pnictide oxides or oxypnictides, over the course of the last decade, have been shown to exhibit a broad spectrum of superconducting, magnetic, and semiconducting properties. However, the structural diversity of the mixed-anion materials is far greater than the several known structure types, or their variants, of the well-known layered superconductive materials. Therefore, with this treatise, we aim to provide a comprehensive overview of the crystal chemistry of pnictide oxides by recounting almost 40 different structures of such ternary and multinary compounds. In addition to the structural aspects, we also highlight some of the challenges associated with the synthesis, and briefly summarize reported, to date, physical properties of this remarkable class of solids.
期刊介绍:
Zeitschrift für Kristallographie – Crystalline Materials was founded in 1877 by Paul von Groth and is today one of the world’s oldest scientific journals. It offers a place for researchers to present results of their theoretical experimental crystallographic studies. The journal presents significant results on structures and on properties of organic/inorganic substances with crystalline character, periodically ordered, modulated or quasicrystalline on static and dynamic phenomena applying the various methods of diffraction, spectroscopy and microscopy.