D. Pominova, I. Romanishkin, E. Plotnikova, N. Morozova, V. Loschenov, R. Wittig, M. Linden, R. Steiner, A. V. Ryabova
{"title":"光诱导氧化铁纳米颗粒增强激光治疗","authors":"D. Pominova, I. Romanishkin, E. Plotnikova, N. Morozova, V. Loschenov, R. Wittig, M. Linden, R. Steiner, A. V. Ryabova","doi":"10.24931/2413-9432-2021-10-4-44-58","DOIUrl":null,"url":null,"abstract":"Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation.","PeriodicalId":37713,"journal":{"name":"Biomedical Photonics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photo-induced processes of iron oxide nanoparticles to enhance laser therapy\",\"authors\":\"D. Pominova, I. Romanishkin, E. Plotnikova, N. Morozova, V. Loschenov, R. Wittig, M. Linden, R. Steiner, A. V. Ryabova\",\"doi\":\"10.24931/2413-9432-2021-10-4-44-58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation.\",\"PeriodicalId\":37713,\"journal\":{\"name\":\"Biomedical Photonics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24931/2413-9432-2021-10-4-44-58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24931/2413-9432-2021-10-4-44-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Photo-induced processes of iron oxide nanoparticles to enhance laser therapy
Nanoparticles are used as drug carriers to increase the selectivity and effectiveness of therapy, as well as for combined therapy that utilizes different effects. Iron oxide nanoparticles are promising in this aspect. Due to magnetic properties, they can be used as a contrast agent for magnetic resonance imaging. Also, iron oxide nanoparticles could be coated with a photosensitizer for photodynamic therapy and their laser or magnetic heating can be used for phototherapy. Local enhancement of the electromagnetic field near iron oxide nanoparticles can increase the fluorescence intensity of photosensitizers and the efficiency of singlet oxygen generation. This paper presents the results of a study of iron oxide nanoparticles focused on the photophysical aspects of the formation of “hot spots” under laser irradiation. The photoinduced effects of iron oxide nanoparticles observed in in vitro experiments lead to the rupture of lysosomes. Theoretical modeling showed that the heating of iron oxide nanoparticles with a radius of 35 nm under the action of laser radiation is about 89°C and 19°C for wavelengths of 458 and 561 nm, respectively. Local field enhancement occurs in pairs of nanoparticles of various sizes and strongly depends on the distance between them. The maximum gain is achieved at small distances between nanoparticles. For a dimer of nanoparticles with radii of 10 and 35 nm at a distance of 1 nm, an enhancement factor of two orders of magnitude was obtained. The investigated phenomenon of «hot spots» is in demand for precision therapy, because the photo-induced processes occur at small distances between nanoparticles, in areas of their high accumulation.
期刊介绍:
The main goal of the journal – to promote the development of Russian biomedical photonics and implementation of its advances into medical practice. The primary objectives: - Presentation of up-to-date results of scientific and in research and scientific and practical (clinical and experimental) activity in the field of biomedical photonics. - Development of united Russian media for integration of knowledge and experience of scientists and practitioners in this field. - Distribution of best practices in laser medicine to regions. - Keeping the clinicians informed about new methods and devices for laser medicine - Approval of investigations of Ph.D candidates and applicants.