利用神经网络对红细胞平衡形态的有效识别

Houda Fahim, Olivier Sawadogo, N. Alaa, M. Guedda
{"title":"利用神经网络对红细胞平衡形态的有效识别","authors":"Houda Fahim, Olivier Sawadogo, N. Alaa, M. Guedda","doi":"10.32523/2306-6172-2021-9-2-39-56","DOIUrl":null,"url":null,"abstract":"This work of applied mathematics with interfaces in bio-physics focuses on the shape identification and numerical modelisation of a single red blood cell shape. The purpose of this work is to provide a quantitative method for interpreting experimental observations of the red blood cell shape under microscopy. In this paper we give a new formulation based on classical theory of geometric shape minimization which assumes that the curvature energy with additional constraints controls the shape of the red blood cell. To minimize this energy under volume and area constraints, we propose a new hybrid algorithm which combines Particle Swarm Optimization (PSO), Gravitational Search (GSA) and Neural Network Algorithm (NNA). The results obtained using this new algorithm agree well with the experimental results given by Evans et al. (8) especially for sphered and biconcave shapes.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EFFICIENT IDENTIFICATION OF RED BLOOD CELL EQUILIBRIUM SHAPE USING NEURAL NETWORKS\",\"authors\":\"Houda Fahim, Olivier Sawadogo, N. Alaa, M. Guedda\",\"doi\":\"10.32523/2306-6172-2021-9-2-39-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work of applied mathematics with interfaces in bio-physics focuses on the shape identification and numerical modelisation of a single red blood cell shape. The purpose of this work is to provide a quantitative method for interpreting experimental observations of the red blood cell shape under microscopy. In this paper we give a new formulation based on classical theory of geometric shape minimization which assumes that the curvature energy with additional constraints controls the shape of the red blood cell. To minimize this energy under volume and area constraints, we propose a new hybrid algorithm which combines Particle Swarm Optimization (PSO), Gravitational Search (GSA) and Neural Network Algorithm (NNA). The results obtained using this new algorithm agree well with the experimental results given by Evans et al. (8) especially for sphered and biconcave shapes.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2021-9-2-39-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2021-9-2-39-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项生物物理中具有界面的应用数学工作专注于单个红细胞形状的形状识别和数值建模。这项工作的目的是提供一种定量方法来解释显微镜下红细胞形状的实验观察结果。在本文中,我们基于经典的几何形状最小化理论给出了一个新的公式,该公式假设具有附加约束的曲率能量控制红细胞的形状。为了在体积和面积约束下最小化这种能量,我们提出了一种新的混合算法,该算法结合了粒子群优化(PSO)、引力搜索(GSA)和神经网络算法(NNA)。使用该新算法获得的结果与Evans等人给出的实验结果非常一致。(8)特别是对于球形和双凹面形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
AN EFFICIENT IDENTIFICATION OF RED BLOOD CELL EQUILIBRIUM SHAPE USING NEURAL NETWORKS
This work of applied mathematics with interfaces in bio-physics focuses on the shape identification and numerical modelisation of a single red blood cell shape. The purpose of this work is to provide a quantitative method for interpreting experimental observations of the red blood cell shape under microscopy. In this paper we give a new formulation based on classical theory of geometric shape minimization which assumes that the curvature energy with additional constraints controls the shape of the red blood cell. To minimize this energy under volume and area constraints, we propose a new hybrid algorithm which combines Particle Swarm Optimization (PSO), Gravitational Search (GSA) and Neural Network Algorithm (NNA). The results obtained using this new algorithm agree well with the experimental results given by Evans et al. (8) especially for sphered and biconcave shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信