{"title":"van Hemmen-Ando范数不等式的推广","authors":"H. Najafi","doi":"10.1017/S0017089522000155","DOIUrl":null,"url":null,"abstract":"Abstract Let $C_{\\||.\\||}$ be an ideal of compact operators with symmetric norm $\\||.\\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\\infty)$ and S and T are bounded operators in $\\mathbb{B}(\\mathscr{H}\\;\\,)$ such that ${\\rm{sp}}(S),{\\rm{sp}}(T) \\subseteq \\Gamma_a=\\{z\\in \\mathbb{C} \\ | \\ {\\rm{re}}(z)\\geq a\\}$ , then \\begin{equation*}\\||f(S)X-Xf(T)\\|| \\leq\\;f'(a) \\ \\||SX-XT\\||,\\end{equation*} for each $X\\in C_{\\||.\\||}$ . In particular, if ${\\rm{sp}}(S), {\\rm{sp}}(T) \\subseteq \\Gamma_a$ , then \\begin{equation*}\\||S^r X-XT^r\\|| \\leq r a^{r-1} \\ \\||SX-XT\\||,\\end{equation*} for each $X\\in C_{\\||.\\||}$ and for each $0\\leq r\\leq 1$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension of the van Hemmen–Ando norm inequality\",\"authors\":\"H. Najafi\",\"doi\":\"10.1017/S0017089522000155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $C_{\\\\||.\\\\||}$ be an ideal of compact operators with symmetric norm $\\\\||.\\\\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\\\\infty)$ and S and T are bounded operators in $\\\\mathbb{B}(\\\\mathscr{H}\\\\;\\\\,)$ such that ${\\\\rm{sp}}(S),{\\\\rm{sp}}(T) \\\\subseteq \\\\Gamma_a=\\\\{z\\\\in \\\\mathbb{C} \\\\ | \\\\ {\\\\rm{re}}(z)\\\\geq a\\\\}$ , then \\\\begin{equation*}\\\\||f(S)X-Xf(T)\\\\|| \\\\leq\\\\;f'(a) \\\\ \\\\||SX-XT\\\\||,\\\\end{equation*} for each $X\\\\in C_{\\\\||.\\\\||}$ . In particular, if ${\\\\rm{sp}}(S), {\\\\rm{sp}}(T) \\\\subseteq \\\\Gamma_a$ , then \\\\begin{equation*}\\\\||S^r X-XT^r\\\\|| \\\\leq r a^{r-1} \\\\ \\\\||SX-XT\\\\||,\\\\end{equation*} for each $X\\\\in C_{\\\\||.\\\\||}$ and for each $0\\\\leq r\\\\leq 1$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089522000155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要设$C_{\|.\|}$是具有对称范数$\|.\ |$的紧致算子的理想。在本文中,我们推广了任意有界算子的van-Hemmen–Ando范数不等式如下:如果f是$[0,\infty)$上的算子单调函数,并且S和T是$\mathbb{B}(\mathscr{H}\;\,)$中的有界算子,使得${\rm{sp}}}\|\leq\;f'(a)\||SX-XT\||,\end{方程*}对于C_{\|.\||}$中的每个$X\。特别是,如果${\rm{sp}}(S),{\rm{sp}}(T)\substeq\Gamma_a$,则\ begin{equation*}\||S^r X-XT^r \|\leq r a ^{r-1}\|| SX-XT \||,\ end{equation*}对于C_。
An extension of the van Hemmen–Ando norm inequality
Abstract Let $C_{\||.\||}$ be an ideal of compact operators with symmetric norm $\||.\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\infty)$ and S and T are bounded operators in $\mathbb{B}(\mathscr{H}\;\,)$ such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a=\{z\in \mathbb{C} \ | \ {\rm{re}}(z)\geq a\}$ , then \begin{equation*}\||f(S)X-Xf(T)\|| \leq\;f'(a) \ \||SX-XT\||,\end{equation*} for each $X\in C_{\||.\||}$ . In particular, if ${\rm{sp}}(S), {\rm{sp}}(T) \subseteq \Gamma_a$ , then \begin{equation*}\||S^r X-XT^r\|| \leq r a^{r-1} \ \||SX-XT\||,\end{equation*} for each $X\in C_{\||.\||}$ and for each $0\leq r\leq 1$ .