{"title":"氟质叶绿石-(K)在高压下的结构演化","authors":"Y. Seryotkin, M. Ignatov","doi":"10.1080/08957959.2023.2248357","DOIUrl":null,"url":null,"abstract":"ABSTRACT The high pressure structural evolution of a natural fluorapophyllite-(K) K0.70(NH4)0.20 Ca3.97Na0.07[Al0.04Si7.96O20]F0.99·(H2O)8.05, Z = 2, a = 8.9757(2), c = 15.7920(2) Å, space group P4/mnc, from Nidym river, East Siberia, Russia, compressed in penetrating (ethanol:water 4:1 mixture) and non-penetrating (paraffin oil) media up to 4.7 GPa, was studied by single-crystal X-ray diffraction with a diamond anvil cell. The compressibility is identical in both media. At the initial stage the compression proceeds mainly within the plane (xy) and less along the z-axis; above 3 GPa the compression becomes almost isometric. Within the whole pressure range there are no signs of the symmetry lowering. The main pressure-induced effect on the tetrahedral layer consists in a cooperative rotation of the 4-fold rings, which provides the structure compression within the (xy) plane. The compression along the z-axis proceeds through the shortening of the interlayer distance, whereas the thickness of silicate layer remains almost unchanged.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure evolution of fluorapophyllite-(K) under high pressure\",\"authors\":\"Y. Seryotkin, M. Ignatov\",\"doi\":\"10.1080/08957959.2023.2248357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The high pressure structural evolution of a natural fluorapophyllite-(K) K0.70(NH4)0.20 Ca3.97Na0.07[Al0.04Si7.96O20]F0.99·(H2O)8.05, Z = 2, a = 8.9757(2), c = 15.7920(2) Å, space group P4/mnc, from Nidym river, East Siberia, Russia, compressed in penetrating (ethanol:water 4:1 mixture) and non-penetrating (paraffin oil) media up to 4.7 GPa, was studied by single-crystal X-ray diffraction with a diamond anvil cell. The compressibility is identical in both media. At the initial stage the compression proceeds mainly within the plane (xy) and less along the z-axis; above 3 GPa the compression becomes almost isometric. Within the whole pressure range there are no signs of the symmetry lowering. The main pressure-induced effect on the tetrahedral layer consists in a cooperative rotation of the 4-fold rings, which provides the structure compression within the (xy) plane. The compression along the z-axis proceeds through the shortening of the interlayer distance, whereas the thickness of silicate layer remains almost unchanged.\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2023.2248357\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2023.2248357","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure evolution of fluorapophyllite-(K) under high pressure
ABSTRACT The high pressure structural evolution of a natural fluorapophyllite-(K) K0.70(NH4)0.20 Ca3.97Na0.07[Al0.04Si7.96O20]F0.99·(H2O)8.05, Z = 2, a = 8.9757(2), c = 15.7920(2) Å, space group P4/mnc, from Nidym river, East Siberia, Russia, compressed in penetrating (ethanol:water 4:1 mixture) and non-penetrating (paraffin oil) media up to 4.7 GPa, was studied by single-crystal X-ray diffraction with a diamond anvil cell. The compressibility is identical in both media. At the initial stage the compression proceeds mainly within the plane (xy) and less along the z-axis; above 3 GPa the compression becomes almost isometric. Within the whole pressure range there are no signs of the symmetry lowering. The main pressure-induced effect on the tetrahedral layer consists in a cooperative rotation of the 4-fold rings, which provides the structure compression within the (xy) plane. The compression along the z-axis proceeds through the shortening of the interlayer distance, whereas the thickness of silicate layer remains almost unchanged.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.