{"title":"酚类植物化学物质纳米配方治疗肝癌的可能性。","authors":"Prasun Patra, Debayan Banik","doi":"10.2174/2468187312666220908094042","DOIUrl":null,"url":null,"abstract":"\n\nCancer is a group of disease where the body cells continuously grow without proper cell division thereby, causing tumours and leading to metastasis. Among many types of cancer, liver cancer remains a common and leading cause of human death. Plants have always been a great source of medicine and pharmacotherapy. Phytochemicals are plant produced metabolites and phenolic phytochemicals are a subclass of it. Phenolic phytochemicals like curcumin, gallic acid and EGCG are secondary plant metabolites. They have been found to be effective and can improve the cell signalling pathways that govern cancer cell proliferations, inflammations, nearby invasions, and apoptosis. These phenolic phytochemicals greatly induce cell apoptosis and inhibit cancer cell growth. In this review article, we discuss how to improve the mentioned phytochemical's potency against hepatocellular carcinoma (HCC). One of the best approaches to improve the efficacy of these natural phytochemicals is to prepare nano formulations of these phytochemicals. Nano formulations impressively increase bioavailability, stability, absorption in the body and increased efficiency of these phytochemicals. The diverse character of many nanoparticles (NP) discussed in this article enables these systems to exhibit strong anticancer activity, emphasising combined therapy's benefits and necessity to combat cancer. In addition, nano formulations of these phenolic phytochemicals remarkably show a high apoptosis rate against HepG2 cells (HCC).\n","PeriodicalId":10818,"journal":{"name":"Current Nanomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possibility of liver cancer treatment by nanoformulation of phenolic phytochemicals.\",\"authors\":\"Prasun Patra, Debayan Banik\",\"doi\":\"10.2174/2468187312666220908094042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nCancer is a group of disease where the body cells continuously grow without proper cell division thereby, causing tumours and leading to metastasis. Among many types of cancer, liver cancer remains a common and leading cause of human death. Plants have always been a great source of medicine and pharmacotherapy. Phytochemicals are plant produced metabolites and phenolic phytochemicals are a subclass of it. Phenolic phytochemicals like curcumin, gallic acid and EGCG are secondary plant metabolites. They have been found to be effective and can improve the cell signalling pathways that govern cancer cell proliferations, inflammations, nearby invasions, and apoptosis. These phenolic phytochemicals greatly induce cell apoptosis and inhibit cancer cell growth. In this review article, we discuss how to improve the mentioned phytochemical's potency against hepatocellular carcinoma (HCC). One of the best approaches to improve the efficacy of these natural phytochemicals is to prepare nano formulations of these phytochemicals. Nano formulations impressively increase bioavailability, stability, absorption in the body and increased efficiency of these phytochemicals. The diverse character of many nanoparticles (NP) discussed in this article enables these systems to exhibit strong anticancer activity, emphasising combined therapy's benefits and necessity to combat cancer. In addition, nano formulations of these phenolic phytochemicals remarkably show a high apoptosis rate against HepG2 cells (HCC).\\n\",\"PeriodicalId\":10818,\"journal\":{\"name\":\"Current Nanomedicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2468187312666220908094042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2468187312666220908094042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Possibility of liver cancer treatment by nanoformulation of phenolic phytochemicals.
Cancer is a group of disease where the body cells continuously grow without proper cell division thereby, causing tumours and leading to metastasis. Among many types of cancer, liver cancer remains a common and leading cause of human death. Plants have always been a great source of medicine and pharmacotherapy. Phytochemicals are plant produced metabolites and phenolic phytochemicals are a subclass of it. Phenolic phytochemicals like curcumin, gallic acid and EGCG are secondary plant metabolites. They have been found to be effective and can improve the cell signalling pathways that govern cancer cell proliferations, inflammations, nearby invasions, and apoptosis. These phenolic phytochemicals greatly induce cell apoptosis and inhibit cancer cell growth. In this review article, we discuss how to improve the mentioned phytochemical's potency against hepatocellular carcinoma (HCC). One of the best approaches to improve the efficacy of these natural phytochemicals is to prepare nano formulations of these phytochemicals. Nano formulations impressively increase bioavailability, stability, absorption in the body and increased efficiency of these phytochemicals. The diverse character of many nanoparticles (NP) discussed in this article enables these systems to exhibit strong anticancer activity, emphasising combined therapy's benefits and necessity to combat cancer. In addition, nano formulations of these phenolic phytochemicals remarkably show a high apoptosis rate against HepG2 cells (HCC).