二价阳离子对海藻酸盐水凝胶生物污染行为的影响

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Jiamin Zhang, Jia Ke, Yingnan Zhu, Jiayin Song, Jing Yang, Chiyu Wen, Lei Zhang
{"title":"二价阳离子对海藻酸盐水凝胶生物污染行为的影响","authors":"Jiamin Zhang, Jia Ke, Yingnan Zhu, Jiayin Song, Jing Yang, Chiyu Wen, Lei Zhang","doi":"10.1088/1748-605X/ab4542","DOIUrl":null,"url":null,"abstract":"Alginate is one of the most favorable materials in many biomedical applications. The mechanical properties of alginate hydrogels can be easily tailored by adding different concentrations of divalent cations. In this work, we demonstrate that the method can also notably influence the biofouling behaviors of alginate hydrogels. A series of alginate hydrogels was prepared by tuning the concentrations of two types of divalent cation (Ca2+ or Ba2+). It was found that the biofouling behaviors of the hydrogels exhibited a ‘U’ curve tendency with the cation concentrations. Interestingly, we found that in optimal conditions ([Ca2+] = 0.9 mM or [Ba2+] = 0.54 mM), the resultant Ca0.9- and Ba0.54-alginate hydrogels were able to achieve negligible adhesion of the proteins and bacteria. Moreover, these two formulations were also able to prevent inflammatory responses at least 4 weeks after subcutaneous implantation in a mouse model. The findings in this work provide more insights into the design and development of appropriate alginate hydrogels for different applications.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab4542","citationCount":"7","resultStr":"{\"title\":\"Influence of divalent cations on the biofouling behaviors of alginate hydrogels\",\"authors\":\"Jiamin Zhang, Jia Ke, Yingnan Zhu, Jiayin Song, Jing Yang, Chiyu Wen, Lei Zhang\",\"doi\":\"10.1088/1748-605X/ab4542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alginate is one of the most favorable materials in many biomedical applications. The mechanical properties of alginate hydrogels can be easily tailored by adding different concentrations of divalent cations. In this work, we demonstrate that the method can also notably influence the biofouling behaviors of alginate hydrogels. A series of alginate hydrogels was prepared by tuning the concentrations of two types of divalent cation (Ca2+ or Ba2+). It was found that the biofouling behaviors of the hydrogels exhibited a ‘U’ curve tendency with the cation concentrations. Interestingly, we found that in optimal conditions ([Ca2+] = 0.9 mM or [Ba2+] = 0.54 mM), the resultant Ca0.9- and Ba0.54-alginate hydrogels were able to achieve negligible adhesion of the proteins and bacteria. Moreover, these two formulations were also able to prevent inflammatory responses at least 4 weeks after subcutaneous implantation in a mouse model. The findings in this work provide more insights into the design and development of appropriate alginate hydrogels for different applications.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1748-605X/ab4542\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ab4542\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab4542","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7

摘要

藻酸盐是许多生物医学应用中最有利的材料之一。通过加入不同浓度的二价阳离子,可以很容易地调整海藻酸盐水凝胶的力学性能。在这项工作中,我们证明了该方法也可以显著影响海藻酸盐水凝胶的生物污染行为。通过调节两种二价阳离子(Ca2+或Ba2+)的浓度,制备了一系列海藻酸盐水凝胶。结果表明,水凝胶的生物污染行为随阳离子浓度呈“U”型变化。有趣的是,我们发现在最佳条件下([Ca2+] = 0.9 mM或[Ba2+] = 0.54 mM),所得的Ca0.9-和ba0.54 -海藻酸盐水凝胶能够实现蛋白质和细菌的微不足道的粘附。此外,在小鼠模型中,这两种制剂在皮下植入至少4周后也能够预防炎症反应。这项工作的发现为设计和开发适合不同应用的海藻酸盐水凝胶提供了更多的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of divalent cations on the biofouling behaviors of alginate hydrogels
Alginate is one of the most favorable materials in many biomedical applications. The mechanical properties of alginate hydrogels can be easily tailored by adding different concentrations of divalent cations. In this work, we demonstrate that the method can also notably influence the biofouling behaviors of alginate hydrogels. A series of alginate hydrogels was prepared by tuning the concentrations of two types of divalent cation (Ca2+ or Ba2+). It was found that the biofouling behaviors of the hydrogels exhibited a ‘U’ curve tendency with the cation concentrations. Interestingly, we found that in optimal conditions ([Ca2+] = 0.9 mM or [Ba2+] = 0.54 mM), the resultant Ca0.9- and Ba0.54-alginate hydrogels were able to achieve negligible adhesion of the proteins and bacteria. Moreover, these two formulations were also able to prevent inflammatory responses at least 4 weeks after subcutaneous implantation in a mouse model. The findings in this work provide more insights into the design and development of appropriate alginate hydrogels for different applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信