{"title":"脉冲星在船舶导航中的应用:六分仪的替代品","authors":"Janusz Adamson","doi":"10.1017/S0373463322000297","DOIUrl":null,"url":null,"abstract":"Abstract A new method is proposed for determining a ship's position at sea using naturally occurring pulsar signals to provide an alternative to the sextant. Use is made of four distinct pulsar radio signals whose timing stabilities are comparable to atomic clocks and whose characteristic signatures can be used as natural radio navigation beacons. Pulse peak time difference measurements, accurate to within 10−5 and 10−6 s, were generated for a key reference observatory which provides long-term pulsar timing observations and for the unknown ship location. These time differences when multiplied by the velocity of light provide a distance value that is fundamental in calculating the ship's position. Resultant simulations provided a position accuracy to ≈1⋅1 km (≈0⋅6 nm) for the higher timing difference measurement. A single-pulsar-based approach, which gave a position accuracy to ≈2⋅8 km (≈1⋅5 nm), was also investigated for affordable equipment solutions and comparison with NASA space-based navigation experiments.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"75 1","pages":"1049 - 1068"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of pulsars for ship navigation: an alternative to the sextant\",\"authors\":\"Janusz Adamson\",\"doi\":\"10.1017/S0373463322000297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new method is proposed for determining a ship's position at sea using naturally occurring pulsar signals to provide an alternative to the sextant. Use is made of four distinct pulsar radio signals whose timing stabilities are comparable to atomic clocks and whose characteristic signatures can be used as natural radio navigation beacons. Pulse peak time difference measurements, accurate to within 10−5 and 10−6 s, were generated for a key reference observatory which provides long-term pulsar timing observations and for the unknown ship location. These time differences when multiplied by the velocity of light provide a distance value that is fundamental in calculating the ship's position. Resultant simulations provided a position accuracy to ≈1⋅1 km (≈0⋅6 nm) for the higher timing difference measurement. A single-pulsar-based approach, which gave a position accuracy to ≈2⋅8 km (≈1⋅5 nm), was also investigated for affordable equipment solutions and comparison with NASA space-based navigation experiments.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":\"75 1\",\"pages\":\"1049 - 1068\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0373463322000297\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000297","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Use of pulsars for ship navigation: an alternative to the sextant
Abstract A new method is proposed for determining a ship's position at sea using naturally occurring pulsar signals to provide an alternative to the sextant. Use is made of four distinct pulsar radio signals whose timing stabilities are comparable to atomic clocks and whose characteristic signatures can be used as natural radio navigation beacons. Pulse peak time difference measurements, accurate to within 10−5 and 10−6 s, were generated for a key reference observatory which provides long-term pulsar timing observations and for the unknown ship location. These time differences when multiplied by the velocity of light provide a distance value that is fundamental in calculating the ship's position. Resultant simulations provided a position accuracy to ≈1⋅1 km (≈0⋅6 nm) for the higher timing difference measurement. A single-pulsar-based approach, which gave a position accuracy to ≈2⋅8 km (≈1⋅5 nm), was also investigated for affordable equipment solutions and comparison with NASA space-based navigation experiments.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.