Clara Letessier, Jean-Louis Cardi, A. Dussel, Isa Ebtehaj, H. Bonakdari
{"title":"利用河流流量观测中气象参数的整合提高洪水预报精度——以渥太华河为例","authors":"Clara Letessier, Jean-Louis Cardi, A. Dussel, Isa Ebtehaj, H. Bonakdari","doi":"10.3390/hydrology10080164","DOIUrl":null,"url":null,"abstract":"Given that the primary cause of flooding in Ontario, Canada, is attributed to spring floods, it is crucial to incorporate temperature as an input variable in flood prediction models with machine learning algorithms. This inclusion enables a comprehensive understanding of the intricate dynamics involved, particularly the impact of heatwaves on snowmelt, allowing for more accurate flood prediction. This paper presents a novel machine learning approach called the Adaptive Structure of the Group Method of Data Handling (ASGMDH) for predicting daily river flow rates, incorporating measured discharge from the previous day as a historical record summarizing watershed characteristics, along with real-time data on air temperature and precipitation. To propose a comprehensive machine learning model, four different scenarios with various input combinations were examined. The simplest model with three parameters (maximum temperature, precipitation, historical daily river flow discharge) achieves high accuracy, with an R2 value of 0.985 during training and 0.992 during testing, demonstrating its reliability and potential for practical application. The developed ASGMDH model demonstrates high accuracy for the study area, with a significant number of samples having a relative error of less than 15%. The final ASGMDH-based model has only a second-order polynomial (AICc = 19,648.71), while it is seven for the classical GMDH-based model (AICc = 19,701.56). The sensitivity analysis reveals that maximum temperature significantly impacts the prediction of daily river flow discharge.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Flood Prediction Accuracy through Integration of Meteorological Parameters in River Flow Observations: A Case Study Ottawa River\",\"authors\":\"Clara Letessier, Jean-Louis Cardi, A. Dussel, Isa Ebtehaj, H. Bonakdari\",\"doi\":\"10.3390/hydrology10080164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given that the primary cause of flooding in Ontario, Canada, is attributed to spring floods, it is crucial to incorporate temperature as an input variable in flood prediction models with machine learning algorithms. This inclusion enables a comprehensive understanding of the intricate dynamics involved, particularly the impact of heatwaves on snowmelt, allowing for more accurate flood prediction. This paper presents a novel machine learning approach called the Adaptive Structure of the Group Method of Data Handling (ASGMDH) for predicting daily river flow rates, incorporating measured discharge from the previous day as a historical record summarizing watershed characteristics, along with real-time data on air temperature and precipitation. To propose a comprehensive machine learning model, four different scenarios with various input combinations were examined. The simplest model with three parameters (maximum temperature, precipitation, historical daily river flow discharge) achieves high accuracy, with an R2 value of 0.985 during training and 0.992 during testing, demonstrating its reliability and potential for practical application. The developed ASGMDH model demonstrates high accuracy for the study area, with a significant number of samples having a relative error of less than 15%. The final ASGMDH-based model has only a second-order polynomial (AICc = 19,648.71), while it is seven for the classical GMDH-based model (AICc = 19,701.56). The sensitivity analysis reveals that maximum temperature significantly impacts the prediction of daily river flow discharge.\",\"PeriodicalId\":37372,\"journal\":{\"name\":\"Hydrology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/hydrology10080164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10080164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Enhancing Flood Prediction Accuracy through Integration of Meteorological Parameters in River Flow Observations: A Case Study Ottawa River
Given that the primary cause of flooding in Ontario, Canada, is attributed to spring floods, it is crucial to incorporate temperature as an input variable in flood prediction models with machine learning algorithms. This inclusion enables a comprehensive understanding of the intricate dynamics involved, particularly the impact of heatwaves on snowmelt, allowing for more accurate flood prediction. This paper presents a novel machine learning approach called the Adaptive Structure of the Group Method of Data Handling (ASGMDH) for predicting daily river flow rates, incorporating measured discharge from the previous day as a historical record summarizing watershed characteristics, along with real-time data on air temperature and precipitation. To propose a comprehensive machine learning model, four different scenarios with various input combinations were examined. The simplest model with three parameters (maximum temperature, precipitation, historical daily river flow discharge) achieves high accuracy, with an R2 value of 0.985 during training and 0.992 during testing, demonstrating its reliability and potential for practical application. The developed ASGMDH model demonstrates high accuracy for the study area, with a significant number of samples having a relative error of less than 15%. The final ASGMDH-based model has only a second-order polynomial (AICc = 19,648.71), while it is seven for the classical GMDH-based model (AICc = 19,701.56). The sensitivity analysis reveals that maximum temperature significantly impacts the prediction of daily river flow discharge.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.