Gerges Abdelsayed , Danish Ali , Andrew Malone , Jemil Saidi , Manoj Myneni , Keshava Rajagopal , Faisal H. Cheema , Aamir Hameed
{"title":"用于模拟心脏生理的2D和3D体外模型","authors":"Gerges Abdelsayed , Danish Ali , Andrew Malone , Jemil Saidi , Manoj Myneni , Keshava Rajagopal , Faisal H. Cheema , Aamir Hameed","doi":"10.1016/j.apples.2022.100115","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiovascular diseases are the leading cause of morbidity and mortality and a huge economic burden on the healthcare system globally. Both pharmacological and device based treatment options have emerged over the years, however, it is still a ‘holy grail’ to effectively treat some cardiovascular conditions, for example, heart failure. Any treatment option whether it is drug therapy or a device therapy, has to go through a rigorous regulatory approval process. This requires robust pre-clinical research and clinical trial results. In order to proceed to the clinical trials, pre-clinical research is very important and may take methodologies which are at the interface of biology and engineering, for example, <em>in-vitro, ex-vivo</em> and <em>in-vivo</em> models. This paper focusses on the 2D and 3D <em>in-vitro</em> models to mimic the pathophysiology of a specific cardiovascular disease and their advantages and limitations.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"12 ","pages":"Article 100115"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000310/pdfft?md5=c71c8e10aebfcff1d89ba5dcbec1da2c&pid=1-s2.0-S2666496822000310-main.pdf","citationCount":"3","resultStr":"{\"title\":\"2D and 3D in-Vitro models for mimicking cardiac physiology\",\"authors\":\"Gerges Abdelsayed , Danish Ali , Andrew Malone , Jemil Saidi , Manoj Myneni , Keshava Rajagopal , Faisal H. Cheema , Aamir Hameed\",\"doi\":\"10.1016/j.apples.2022.100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cardiovascular diseases are the leading cause of morbidity and mortality and a huge economic burden on the healthcare system globally. Both pharmacological and device based treatment options have emerged over the years, however, it is still a ‘holy grail’ to effectively treat some cardiovascular conditions, for example, heart failure. Any treatment option whether it is drug therapy or a device therapy, has to go through a rigorous regulatory approval process. This requires robust pre-clinical research and clinical trial results. In order to proceed to the clinical trials, pre-clinical research is very important and may take methodologies which are at the interface of biology and engineering, for example, <em>in-vitro, ex-vivo</em> and <em>in-vivo</em> models. This paper focusses on the 2D and 3D <em>in-vitro</em> models to mimic the pathophysiology of a specific cardiovascular disease and their advantages and limitations.</p></div>\",\"PeriodicalId\":72251,\"journal\":{\"name\":\"Applications in engineering science\",\"volume\":\"12 \",\"pages\":\"Article 100115\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666496822000310/pdfft?md5=c71c8e10aebfcff1d89ba5dcbec1da2c&pid=1-s2.0-S2666496822000310-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666496822000310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496822000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
2D and 3D in-Vitro models for mimicking cardiac physiology
Cardiovascular diseases are the leading cause of morbidity and mortality and a huge economic burden on the healthcare system globally. Both pharmacological and device based treatment options have emerged over the years, however, it is still a ‘holy grail’ to effectively treat some cardiovascular conditions, for example, heart failure. Any treatment option whether it is drug therapy or a device therapy, has to go through a rigorous regulatory approval process. This requires robust pre-clinical research and clinical trial results. In order to proceed to the clinical trials, pre-clinical research is very important and may take methodologies which are at the interface of biology and engineering, for example, in-vitro, ex-vivo and in-vivo models. This paper focusses on the 2D and 3D in-vitro models to mimic the pathophysiology of a specific cardiovascular disease and their advantages and limitations.