一种用于电动运输机的层流、推进、喷气重叠概念

IF 0.8 Q3 ENGINEERING, AEROSPACE
N. Kehayas
{"title":"一种用于电动运输机的层流、推进、喷气重叠概念","authors":"N. Kehayas","doi":"10.3846/aviation.2023.18498","DOIUrl":null,"url":null,"abstract":"Friction drag constitutes approximately half of the total drag of subsonic civil transport aircraft at cruise conditions. Several means were examined to control the flow over an aircraft and achieve laminar flow. Here, a new concept for friction drag reduction in the form of an integration of the aerodynamics and propulsion of the aircraft is put forward. Engines buried in the wing and at the rear of the fuselage suck the boundary layer of the entire wing and fuselage surface, and then, they used it as intake air and exhaust through ducts. At the wings, the engines exhaust in the form of a jet flap at the trailing edge providing distributed propulsion. By this laminar flow, propulsive concept laminar flow is established over the entire aircraft, resulting in substantial drag reduction. The analysis showed that out of the four electrically powered aircraft versions considered only the combined lift distribution with tailless fuselage is about to be feasible. It was also found that the example aircraft design is inappropriate. It is expected that a design purposely based on the proposed concept would bring electrically powered transport aircraft within the specific energy levels of present batteries.","PeriodicalId":51910,"journal":{"name":"Aviation","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A LAMINAR FLOW, PROPULSIVE, JET-FLAPPED CONCEPT FOR ELECTRICALLY POWERED TRANSPORT AIRCRAFT\",\"authors\":\"N. Kehayas\",\"doi\":\"10.3846/aviation.2023.18498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction drag constitutes approximately half of the total drag of subsonic civil transport aircraft at cruise conditions. Several means were examined to control the flow over an aircraft and achieve laminar flow. Here, a new concept for friction drag reduction in the form of an integration of the aerodynamics and propulsion of the aircraft is put forward. Engines buried in the wing and at the rear of the fuselage suck the boundary layer of the entire wing and fuselage surface, and then, they used it as intake air and exhaust through ducts. At the wings, the engines exhaust in the form of a jet flap at the trailing edge providing distributed propulsion. By this laminar flow, propulsive concept laminar flow is established over the entire aircraft, resulting in substantial drag reduction. The analysis showed that out of the four electrically powered aircraft versions considered only the combined lift distribution with tailless fuselage is about to be feasible. It was also found that the example aircraft design is inappropriate. It is expected that a design purposely based on the proposed concept would bring electrically powered transport aircraft within the specific energy levels of present batteries.\",\"PeriodicalId\":51910,\"journal\":{\"name\":\"Aviation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aviation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/aviation.2023.18498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aviation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/aviation.2023.18498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

在巡航状态下,摩擦阻力约占亚音速民用运输机总阻力的一半。研究了几种控制飞机上空气流并实现层流的方法。在此,提出了一种以空气动力学和飞机推进力相结合的形式减少摩擦阻力的新概念。埋在机翼和机身后部的发动机将整个机翼和机身表面的附面层吸走,然后通过管道将其作为进气和排气。在机翼上,发动机在后缘以喷气襟翼的形式排气,提供分布式推进。通过这种层流,推进概念层流在整个飞机上建立起来,从而大大减少了阻力。分析表明,在考虑的四种电动飞机版本中,只有无尾机身的联合升力分配是可行的。还发现样机设计不合适。预期有意基于拟议概念的设计将使电动运输机达到目前电池的特定能量水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A LAMINAR FLOW, PROPULSIVE, JET-FLAPPED CONCEPT FOR ELECTRICALLY POWERED TRANSPORT AIRCRAFT
Friction drag constitutes approximately half of the total drag of subsonic civil transport aircraft at cruise conditions. Several means were examined to control the flow over an aircraft and achieve laminar flow. Here, a new concept for friction drag reduction in the form of an integration of the aerodynamics and propulsion of the aircraft is put forward. Engines buried in the wing and at the rear of the fuselage suck the boundary layer of the entire wing and fuselage surface, and then, they used it as intake air and exhaust through ducts. At the wings, the engines exhaust in the form of a jet flap at the trailing edge providing distributed propulsion. By this laminar flow, propulsive concept laminar flow is established over the entire aircraft, resulting in substantial drag reduction. The analysis showed that out of the four electrically powered aircraft versions considered only the combined lift distribution with tailless fuselage is about to be feasible. It was also found that the example aircraft design is inappropriate. It is expected that a design purposely based on the proposed concept would bring electrically powered transport aircraft within the specific energy levels of present batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aviation
Aviation ENGINEERING, AEROSPACE-
CiteScore
2.40
自引率
10.00%
发文量
20
审稿时长
15 weeks
期刊介绍: CONCERNING THE FOLLOWING FIELDS OF RESEARCH: ▪ Flight Physics ▪ Air Traffic Management ▪ Aerostructures ▪ Airports ▪ Propulsion ▪ Human Factors ▪ Aircraft Avionics, Systems and Equipment ▪ Air Transport Technologies and Development ▪ Flight Mechanics ▪ History of Aviation ▪ Integrated Design and Validation (method and tools) Besides, it publishes: short reports and notes, reviews, reports about conferences and workshops
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信