基于高效优化技术的6T SRAM电池DRV评估

IF 1.3 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
V. Joshi, Chetan D. Nayak
{"title":"基于高效优化技术的6T SRAM电池DRV评估","authors":"V. Joshi, Chetan D. Nayak","doi":"10.1155/2018/3457284","DOIUrl":null,"url":null,"abstract":"An optimization based method which uses bisection search algorithm has been proposed to evaluate the accurate value of Data Retention Voltage (DRV) of a 6T Static Random Access Memory (SRAM) cell using 45 nm technology in the presence of process parameter variations. Further, we incorporate an Artificial Neural Network (ANN) block in our proposed methodology to optimize the simulation run time. The highest values obtained from these two methods are declared as the DRV. We noted an increase in DRV with temperature (T) and process variations (PVs). The main advantage of the proposed technique is to reduce the DRV evaluation time and for our case, we observe improvement in evaluation time of DRV by ≈46, ≈27, and ≈8 times at 25°C for 3 σ, 4 σ, and 5 σ variations, respectively, using ANN block to without using ANN block.","PeriodicalId":43355,"journal":{"name":"Active and Passive Electronic Components","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/3457284","citationCount":"4","resultStr":"{\"title\":\"DRV Evaluation of 6T SRAM Cell Using Efficient Optimization Techniques\",\"authors\":\"V. Joshi, Chetan D. Nayak\",\"doi\":\"10.1155/2018/3457284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimization based method which uses bisection search algorithm has been proposed to evaluate the accurate value of Data Retention Voltage (DRV) of a 6T Static Random Access Memory (SRAM) cell using 45 nm technology in the presence of process parameter variations. Further, we incorporate an Artificial Neural Network (ANN) block in our proposed methodology to optimize the simulation run time. The highest values obtained from these two methods are declared as the DRV. We noted an increase in DRV with temperature (T) and process variations (PVs). The main advantage of the proposed technique is to reduce the DRV evaluation time and for our case, we observe improvement in evaluation time of DRV by ≈46, ≈27, and ≈8 times at 25°C for 3 σ, 4 σ, and 5 σ variations, respectively, using ANN block to without using ANN block.\",\"PeriodicalId\":43355,\"journal\":{\"name\":\"Active and Passive Electronic Components\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/3457284\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Active and Passive Electronic Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/3457284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active and Passive Electronic Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/3457284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于对分搜索算法的优化方法,在工艺参数变化的情况下,利用45 nm工艺对6T静态随机存取存储器(SRAM)单元的数据保持电压(DRV)进行精确评估。此外,我们在我们提出的方法中加入了一个人工神经网络(ANN)块来优化仿真运行时间。从这两种方法获得的最大值被声明为DRV。我们注意到DRV随温度(T)和工艺变化(pv)而增加。该技术的主要优点是减少了DRV的评估时间,在我们的案例中,我们观察到在25°C下,对于3 σ、4 σ和5 σ变化,使用人工神经网络块与不使用人工神经网络块相比,DRV的评估时间分别提高了≈46倍、≈27倍和≈8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DRV Evaluation of 6T SRAM Cell Using Efficient Optimization Techniques
An optimization based method which uses bisection search algorithm has been proposed to evaluate the accurate value of Data Retention Voltage (DRV) of a 6T Static Random Access Memory (SRAM) cell using 45 nm technology in the presence of process parameter variations. Further, we incorporate an Artificial Neural Network (ANN) block in our proposed methodology to optimize the simulation run time. The highest values obtained from these two methods are declared as the DRV. We noted an increase in DRV with temperature (T) and process variations (PVs). The main advantage of the proposed technique is to reduce the DRV evaluation time and for our case, we observe improvement in evaluation time of DRV by ≈46, ≈27, and ≈8 times at 25°C for 3 σ, 4 σ, and 5 σ variations, respectively, using ANN block to without using ANN block.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Active and Passive Electronic Components
Active and Passive Electronic Components ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.30
自引率
0.00%
发文量
1
审稿时长
13 weeks
期刊介绍: Active and Passive Electronic Components is an international journal devoted to the science and technology of all types of electronic components. The journal publishes experimental and theoretical papers on topics such as transistors, hybrid circuits, integrated circuits, MicroElectroMechanical Systems (MEMS), sensors, high frequency devices and circuits, power devices and circuits, non-volatile memory technologies such as ferroelectric and phase transition memories, and nano electronics devices and circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信