全息引导心血管干预和训练综述-一个视角

IF 1.2 Q3 Computer Science
Klaudia Proniewska, A. Pręgowska, P. Walecki, Damian Dolega-Dolegowski, R. Ferrari, D. Dudek
{"title":"全息引导心血管干预和训练综述-一个视角","authors":"Klaudia Proniewska, A. Pręgowska, P. Walecki, Damian Dolega-Dolegowski, R. Ferrari, D. Dudek","doi":"10.1515/BAMS-2020-0043","DOIUrl":null,"url":null,"abstract":"Abstract Immersive technologies, like Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) have undergone technical evolutions over the last few decades. Their rapid development and dynamic changes enable their effective applications in medicine, in fields like imaging, preprocedural planning, treatment, operations planning, medical students training, and active support during therapeutic and rehabilitation procedures. Within this paper, a comprehensive analysis of VR/AR/MR application in the medical industry and education is presented. We overview and discuss our previous experience with AR/MR and 3D visual environment and MR-based imaging systems in cardiology and interventional cardiology. Our research shows that using immersive technologies users can not only visualize the heart and its structure but also obtain quantitative feedback on their location. The MR-based imaging system proposed offers better visualization to interventionists and potentially helps users understand complex operational cases. The results obtained suggest that technology using VR/AR/MR can be successfully used in the teaching process of future doctors, both in aspects related to anatomy and clinical classes. Moreover, the system proposed provides a unique opportunity to break the boundaries, interact in the learning process, and exchange experiences inside the medical community.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/BAMS-2020-0043","citationCount":"1","resultStr":"{\"title\":\"Overview of the holographic-guided cardiovascular interventions and training – a perspective\",\"authors\":\"Klaudia Proniewska, A. Pręgowska, P. Walecki, Damian Dolega-Dolegowski, R. Ferrari, D. Dudek\",\"doi\":\"10.1515/BAMS-2020-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Immersive technologies, like Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) have undergone technical evolutions over the last few decades. Their rapid development and dynamic changes enable their effective applications in medicine, in fields like imaging, preprocedural planning, treatment, operations planning, medical students training, and active support during therapeutic and rehabilitation procedures. Within this paper, a comprehensive analysis of VR/AR/MR application in the medical industry and education is presented. We overview and discuss our previous experience with AR/MR and 3D visual environment and MR-based imaging systems in cardiology and interventional cardiology. Our research shows that using immersive technologies users can not only visualize the heart and its structure but also obtain quantitative feedback on their location. The MR-based imaging system proposed offers better visualization to interventionists and potentially helps users understand complex operational cases. The results obtained suggest that technology using VR/AR/MR can be successfully used in the teaching process of future doctors, both in aspects related to anatomy and clinical classes. Moreover, the system proposed provides a unique opportunity to break the boundaries, interact in the learning process, and exchange experiences inside the medical community.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/BAMS-2020-0043\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/BAMS-2020-0043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/BAMS-2020-0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

沉浸式技术,如虚拟现实(VR)、增强现实(AR)和混合现实(MR),在过去的几十年里经历了技术的演变。它们的快速发展和动态变化使其在医学、成像、术前计划、治疗、手术计划、医学生培训以及治疗和康复过程中的积极支持等领域得到有效应用。本文全面分析了VR/AR/MR在医疗行业和教育领域的应用。我们概述并讨论了我们以前在心脏病学和介入性心脏病学中的AR/MR和3D视觉环境以及基于MR的成像系统方面的经验。我们的研究表明,使用沉浸式技术,用户不仅可以可视化心脏及其结构,还可以获得有关其位置的定量反馈。提出的基于核磁共振的成像系统为介入医生提供了更好的可视化,并有可能帮助用户理解复杂的手术病例。结果表明,VR/AR/MR技术可以成功地应用于未来医生的教学过程中,无论是在解剖学方面还是在临床课程方面。此外,提出的系统提供了一个独特的机会,打破边界,在学习过程中互动,并在医学界内交流经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of the holographic-guided cardiovascular interventions and training – a perspective
Abstract Immersive technologies, like Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) have undergone technical evolutions over the last few decades. Their rapid development and dynamic changes enable their effective applications in medicine, in fields like imaging, preprocedural planning, treatment, operations planning, medical students training, and active support during therapeutic and rehabilitation procedures. Within this paper, a comprehensive analysis of VR/AR/MR application in the medical industry and education is presented. We overview and discuss our previous experience with AR/MR and 3D visual environment and MR-based imaging systems in cardiology and interventional cardiology. Our research shows that using immersive technologies users can not only visualize the heart and its structure but also obtain quantitative feedback on their location. The MR-based imaging system proposed offers better visualization to interventionists and potentially helps users understand complex operational cases. The results obtained suggest that technology using VR/AR/MR can be successfully used in the teaching process of future doctors, both in aspects related to anatomy and clinical classes. Moreover, the system proposed provides a unique opportunity to break the boundaries, interact in the learning process, and exchange experiences inside the medical community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bio-Algorithms and Med-Systems
Bio-Algorithms and Med-Systems MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
3.80
自引率
0.00%
发文量
3
期刊介绍: The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信