医用镁合金涂层研究进展

Q1 Engineering
Peiduo Tong, Yulong Sheng, Ruiqing Hou, Mujahid Iqbal, Lan Chen, Jingan Li
{"title":"医用镁合金涂层研究进展","authors":"Peiduo Tong,&nbsp;Yulong Sheng,&nbsp;Ruiqing Hou,&nbsp;Mujahid Iqbal,&nbsp;Lan Chen,&nbsp;Jingan Li","doi":"10.1016/j.smaim.2021.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium (Mg) alloy has received thorough attention in the biomedical field due to its excellent mechanical properties, good biocompatibility, and biodegradability. However, Mg alloy usually shows excessive degradation rate in the physiological environment owning to its active chemical nature. At the same time, the hydrogen generated by the degradation of Mg will increase the pH of local tissues, which will harm the growth of surrounding tissues. Given the above problems, it has become a research hotspot to obtain various properties of Mg alloy for clinical application by surface modification. In this paper, the surface coatings of Mg alloy are reviewed according to different types, including metals (metal oxides, metal hydroxides), inorganic non-metals, polymers (synthetic polymers and natural polymers), and composite coatings. The preparation methods, corrosion resistance, and biocompatibility of different types of coatings are discussed, and the development prospect of biomedical Mg alloy surface coatings is also predicted.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259018342100048X/pdfft?md5=1152ff8e896118ad48e43e2447d87411&pid=1-s2.0-S259018342100048X-main.pdf","citationCount":"55","resultStr":"{\"title\":\"Recent progress on coatings of biomedical magnesium alloy\",\"authors\":\"Peiduo Tong,&nbsp;Yulong Sheng,&nbsp;Ruiqing Hou,&nbsp;Mujahid Iqbal,&nbsp;Lan Chen,&nbsp;Jingan Li\",\"doi\":\"10.1016/j.smaim.2021.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnesium (Mg) alloy has received thorough attention in the biomedical field due to its excellent mechanical properties, good biocompatibility, and biodegradability. However, Mg alloy usually shows excessive degradation rate in the physiological environment owning to its active chemical nature. At the same time, the hydrogen generated by the degradation of Mg will increase the pH of local tissues, which will harm the growth of surrounding tissues. Given the above problems, it has become a research hotspot to obtain various properties of Mg alloy for clinical application by surface modification. In this paper, the surface coatings of Mg alloy are reviewed according to different types, including metals (metal oxides, metal hydroxides), inorganic non-metals, polymers (synthetic polymers and natural polymers), and composite coatings. The preparation methods, corrosion resistance, and biocompatibility of different types of coatings are discussed, and the development prospect of biomedical Mg alloy surface coatings is also predicted.</p></div>\",\"PeriodicalId\":22019,\"journal\":{\"name\":\"Smart Materials in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259018342100048X/pdfft?md5=1152ff8e896118ad48e43e2447d87411&pid=1-s2.0-S259018342100048X-main.pdf\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259018342100048X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259018342100048X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 55

摘要

镁合金以其优异的力学性能、良好的生物相容性和可生物降解性在生物医学领域受到广泛关注。然而,镁合金由于其化学性质活泼,在生理环境中往往表现出过高的降解速率。同时,Mg降解产生的氢会使局部组织的pH升高,对周围组织的生长造成伤害。鉴于上述问题,通过表面改性获得镁合金的各种性能以供临床应用已成为研究热点。本文综述了镁合金表面涂层的研究进展,包括金属涂层(金属氧化物、金属氢氧化物)、无机非金属涂层、聚合物涂层(合成聚合物和天然聚合物)、复合涂层等。讨论了不同类型涂层的制备方法、耐腐蚀性和生物相容性,并对生物医用镁合金表面涂层的发展前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent progress on coatings of biomedical magnesium alloy

Recent progress on coatings of biomedical magnesium alloy

Magnesium (Mg) alloy has received thorough attention in the biomedical field due to its excellent mechanical properties, good biocompatibility, and biodegradability. However, Mg alloy usually shows excessive degradation rate in the physiological environment owning to its active chemical nature. At the same time, the hydrogen generated by the degradation of Mg will increase the pH of local tissues, which will harm the growth of surrounding tissues. Given the above problems, it has become a research hotspot to obtain various properties of Mg alloy for clinical application by surface modification. In this paper, the surface coatings of Mg alloy are reviewed according to different types, including metals (metal oxides, metal hydroxides), inorganic non-metals, polymers (synthetic polymers and natural polymers), and composite coatings. The preparation methods, corrosion resistance, and biocompatibility of different types of coatings are discussed, and the development prospect of biomedical Mg alloy surface coatings is also predicted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信