洛伦兹空间中同质运动表示的一种新方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Ünal, M. Güngör, M. Tosun
{"title":"洛伦兹空间中同质运动表示的一种新方法","authors":"D. Ünal, M. Güngör, M. Tosun","doi":"10.1515/ijnsns-2021-0235","DOIUrl":null,"url":null,"abstract":"Abstract In this study, Rodrigues parameters have been first calculated for a homothetic rotation around spacelike and timelike axis using one parameter homothetic motions in Lorentz 3-space E 1 3 ${\\mathbb{E}}_{1}^{3}$ . The behavior of the vectors during the homothetic rotation, which is the increase or decrease (about size of one of the objects in motion) notion, has been investigated as a three dimensional shape with the help of Cinema 4D program. The behavioral differences have been observed on figures. Then, Lorentz motions that corresponding to the homothetic rotation matrices in terms of spacelike and timelike axes have been examined and expressed in E 1 3 ${\\mathbb{E}}_{1}^{3}$ . Some definitions, theorems, corollaries and three dimensional figures have been given in Lorentz 3-space.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach to representations of homothetic motions in Lorentz space\",\"authors\":\"D. Ünal, M. Güngör, M. Tosun\",\"doi\":\"10.1515/ijnsns-2021-0235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, Rodrigues parameters have been first calculated for a homothetic rotation around spacelike and timelike axis using one parameter homothetic motions in Lorentz 3-space E 1 3 ${\\\\mathbb{E}}_{1}^{3}$ . The behavior of the vectors during the homothetic rotation, which is the increase or decrease (about size of one of the objects in motion) notion, has been investigated as a three dimensional shape with the help of Cinema 4D program. The behavioral differences have been observed on figures. Then, Lorentz motions that corresponding to the homothetic rotation matrices in terms of spacelike and timelike axes have been examined and expressed in E 1 3 ${\\\\mathbb{E}}_{1}^{3}$ . Some definitions, theorems, corollaries and three dimensional figures have been given in Lorentz 3-space.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2021-0235\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2021-0235","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在这项研究中,首次使用洛伦兹3-空间E13${\mathbb{E}}_{1}^{3}$中的单参数同位运动计算了绕类时空轴的同位旋转的Rodrigues参数。在Cinema 4D程序的帮助下,向量在同位旋转过程中的行为,即增加或减少(大约运动中的一个物体的大小)的概念,已经被研究为三维形状。行为上的差异已经在数字上观察到了。然后,研究了与类时空轴上的同位旋转矩阵相对应的洛伦兹运动,并用E13${\mathbb{E}}_{1}^{3}$表示。在洛伦兹3空间中给出了一些定义、定理、推论和三维图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach to representations of homothetic motions in Lorentz space
Abstract In this study, Rodrigues parameters have been first calculated for a homothetic rotation around spacelike and timelike axis using one parameter homothetic motions in Lorentz 3-space E 1 3 ${\mathbb{E}}_{1}^{3}$ . The behavior of the vectors during the homothetic rotation, which is the increase or decrease (about size of one of the objects in motion) notion, has been investigated as a three dimensional shape with the help of Cinema 4D program. The behavioral differences have been observed on figures. Then, Lorentz motions that corresponding to the homothetic rotation matrices in terms of spacelike and timelike axes have been examined and expressed in E 1 3 ${\mathbb{E}}_{1}^{3}$ . Some definitions, theorems, corollaries and three dimensional figures have been given in Lorentz 3-space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信