{"title":"长期CO2富集增加了生物量,但导致矮牵牛花和三色堇快速生理驯化","authors":"David W. McKinney, J. Craver","doi":"10.21273/jashs05304-23","DOIUrl":null,"url":null,"abstract":"Although crops often respond immediately to enriched CO2 concentrations (e.g., increased photosynthesis), this initial response is often not sustained throughout production, thus reducing the benefit of this input. For horticulture species, the timing and extent of these acclimation responses are still widely uncertain. Therefore, the objective of this research was to determine species-specific acclimation responses to elevated CO2 concentrations for pansy (Viola ×wittrockiana ‘Matrix Blue Blotch Improved’) and petunia (Petunia ×hybrida ‘Dreams Midnight’). Seedlings were transplanted to 11.5-cm pots and placed in growth chambers with air temperature, relative humidity, and radiation intensity setpoints of 21 °C, 55%, and 250 μmol⋅m−2⋅s−1, respectively. Carbon dioxide treatments were established using the two growth chambers with setpoints of either 400 (ambient) or 1000 μmol⋅mol−1 (elevated) maintained during a 16-hour photoperiod. In addition to data collected through destructive harvest, the rate of photosynthesis (A) in response to increasing internal leaf CO2 concentration (A-Ci) and at the operating CO2 concentration (A-Ca) were measured weekly with a portable leaf photosynthesis system at saturating [A-Ci (1000 μmol⋅m−2⋅s−1)] or production [A-Ca (250 μmol⋅m−2⋅s−1)] radiation intensities. For both pansy and petunia, elevated CO2 produced greater total shoot dry mass than ambient CO2 after 4 weeks. However, the decreased maximum rate of photosynthetic electron transport, maximum rate of Rubisco carboxylase, and triose phosphate utilization rate of both species were also observed under elevated CO2. Similarly, A measured at 400 and 1000 μmol⋅mol−1 was reduced for both pansy and petunia grown under the elevated compared with ambient CO2 concentration based on A-Ca responses after 7 days, indicating quick physiological acclimation to this input. These results provide information regarding the timing and extent of physiological acclimation in response to elevated CO2 concentrations. However, because of physiological acclimation potentially occurring within 7 days of treatment initiation, additional research is necessary to develop species-specific recommendations for controlled environment production.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term CO2 Enrichment Increases Biomass but Results in Rapid Physiological Acclimation of Petunia and Pansy\",\"authors\":\"David W. McKinney, J. Craver\",\"doi\":\"10.21273/jashs05304-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although crops often respond immediately to enriched CO2 concentrations (e.g., increased photosynthesis), this initial response is often not sustained throughout production, thus reducing the benefit of this input. For horticulture species, the timing and extent of these acclimation responses are still widely uncertain. Therefore, the objective of this research was to determine species-specific acclimation responses to elevated CO2 concentrations for pansy (Viola ×wittrockiana ‘Matrix Blue Blotch Improved’) and petunia (Petunia ×hybrida ‘Dreams Midnight’). Seedlings were transplanted to 11.5-cm pots and placed in growth chambers with air temperature, relative humidity, and radiation intensity setpoints of 21 °C, 55%, and 250 μmol⋅m−2⋅s−1, respectively. Carbon dioxide treatments were established using the two growth chambers with setpoints of either 400 (ambient) or 1000 μmol⋅mol−1 (elevated) maintained during a 16-hour photoperiod. In addition to data collected through destructive harvest, the rate of photosynthesis (A) in response to increasing internal leaf CO2 concentration (A-Ci) and at the operating CO2 concentration (A-Ca) were measured weekly with a portable leaf photosynthesis system at saturating [A-Ci (1000 μmol⋅m−2⋅s−1)] or production [A-Ca (250 μmol⋅m−2⋅s−1)] radiation intensities. For both pansy and petunia, elevated CO2 produced greater total shoot dry mass than ambient CO2 after 4 weeks. However, the decreased maximum rate of photosynthetic electron transport, maximum rate of Rubisco carboxylase, and triose phosphate utilization rate of both species were also observed under elevated CO2. Similarly, A measured at 400 and 1000 μmol⋅mol−1 was reduced for both pansy and petunia grown under the elevated compared with ambient CO2 concentration based on A-Ca responses after 7 days, indicating quick physiological acclimation to this input. These results provide information regarding the timing and extent of physiological acclimation in response to elevated CO2 concentrations. However, because of physiological acclimation potentially occurring within 7 days of treatment initiation, additional research is necessary to develop species-specific recommendations for controlled environment production.\",\"PeriodicalId\":17226,\"journal\":{\"name\":\"Journal of the American Society for Horticultural Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Horticultural Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/jashs05304-23\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05304-23","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
摘要
尽管作物通常会对富集的二氧化碳浓度立即做出反应(例如,光合作用增加),但这种最初的反应往往不会在整个生产过程中持续下去,从而降低了这种投入的效益。对于园艺物种来说,这些适应反应的时间和程度仍然普遍不确定。因此,本研究的目的是确定三色堇(Viola×wittrockiana‘Matrix Blue Blotch Improved’)和矮牵牛(petunia×hybrida‘Dreams Midnight’)对CO2浓度升高的物种特异性驯化反应。将幼苗移植到11.5厘米的花盆中,并放置在空气温度、相对湿度和辐射强度设定值分别为21°C、55%和250μmol·m−2·s−1的生长室中。使用两个生长室建立二氧化碳处理,在16小时的光周期内保持400(环境)或1000μmol·mol−1(升高)的设定值。除了通过破坏性收获收集的数据外,在饱和[A-Ci(1000μmol∙m−2∙s−1)]或产生[A-Ca(250μmol∙。对于三色堇和矮牵牛来说,4周后,升高的CO2产生的总茎干质量大于环境CO2。然而,在CO2浓度升高的情况下,两个物种的光合电子传输最大速率、Rubisco羧化酶最大速率和磷酸三糖利用率也降低。同样,根据7天后的A-Ca反应,与环境CO2浓度相比,在400和1000μmol·mol−1条件下生长的三色堇和矮牵牛的A都降低了,这表明对这种输入的生理适应很快。这些结果提供了关于响应于升高的CO2浓度的生理适应的时间和程度的信息。然而,由于生理适应可能在治疗开始后7天内发生,因此有必要进行额外的研究,以制定针对受控环境生产的物种特异性建议。
Long-term CO2 Enrichment Increases Biomass but Results in Rapid Physiological Acclimation of Petunia and Pansy
Although crops often respond immediately to enriched CO2 concentrations (e.g., increased photosynthesis), this initial response is often not sustained throughout production, thus reducing the benefit of this input. For horticulture species, the timing and extent of these acclimation responses are still widely uncertain. Therefore, the objective of this research was to determine species-specific acclimation responses to elevated CO2 concentrations for pansy (Viola ×wittrockiana ‘Matrix Blue Blotch Improved’) and petunia (Petunia ×hybrida ‘Dreams Midnight’). Seedlings were transplanted to 11.5-cm pots and placed in growth chambers with air temperature, relative humidity, and radiation intensity setpoints of 21 °C, 55%, and 250 μmol⋅m−2⋅s−1, respectively. Carbon dioxide treatments were established using the two growth chambers with setpoints of either 400 (ambient) or 1000 μmol⋅mol−1 (elevated) maintained during a 16-hour photoperiod. In addition to data collected through destructive harvest, the rate of photosynthesis (A) in response to increasing internal leaf CO2 concentration (A-Ci) and at the operating CO2 concentration (A-Ca) were measured weekly with a portable leaf photosynthesis system at saturating [A-Ci (1000 μmol⋅m−2⋅s−1)] or production [A-Ca (250 μmol⋅m−2⋅s−1)] radiation intensities. For both pansy and petunia, elevated CO2 produced greater total shoot dry mass than ambient CO2 after 4 weeks. However, the decreased maximum rate of photosynthetic electron transport, maximum rate of Rubisco carboxylase, and triose phosphate utilization rate of both species were also observed under elevated CO2. Similarly, A measured at 400 and 1000 μmol⋅mol−1 was reduced for both pansy and petunia grown under the elevated compared with ambient CO2 concentration based on A-Ca responses after 7 days, indicating quick physiological acclimation to this input. These results provide information regarding the timing and extent of physiological acclimation in response to elevated CO2 concentrations. However, because of physiological acclimation potentially occurring within 7 days of treatment initiation, additional research is necessary to develop species-specific recommendations for controlled environment production.
期刊介绍:
The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers.
The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as:
- Biotechnology
- Developmental Physiology
- Environmental Stress Physiology
- Genetics and Breeding
- Photosynthesis, Sources-Sink Physiology
- Postharvest Biology
- Seed Physiology
- Postharvest Biology
- Seed Physiology
- Soil-Plant-Water Relationships
- Statistics