{"title":"广义Fused Lasso的单元估计误差","authors":"Teng Zhang, S. Chatterjee","doi":"10.3150/22-bej1557","DOIUrl":null,"url":null,"abstract":"The main result of this article is that we obtain an elementwise error bound for the Fused Lasso estimator for any general convex loss function $\\rho$. We then focus on the special cases when either $\\rho$ is the square loss function (for mean regression) or is the quantile loss function (for quantile regression) for which we derive new pointwise error bounds. Even though error bounds for the usual Fused Lasso estimator and its quantile version have been studied before; our bound appears to be new. This is because all previous works bound a global loss function like the sum of squared error, or a sum of Huber losses in the case of quantile regression in Padilla and Chatterjee (2021). Clearly, element wise bounds are stronger than global loss error bounds as it reveals how the loss behaves locally at each point. Our element wise error bound also has a clean and explicit dependence on the tuning parameter $\\lambda$ which informs the user of a good choice of $\\lambda$. In addition, our bound is nonasymptotic with explicit constants and is able to recover almost all the known results for Fused Lasso (both mean and quantile regression) with additional improvements in some cases.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Element-wise estimation error of generalized Fused Lasso\",\"authors\":\"Teng Zhang, S. Chatterjee\",\"doi\":\"10.3150/22-bej1557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main result of this article is that we obtain an elementwise error bound for the Fused Lasso estimator for any general convex loss function $\\\\rho$. We then focus on the special cases when either $\\\\rho$ is the square loss function (for mean regression) or is the quantile loss function (for quantile regression) for which we derive new pointwise error bounds. Even though error bounds for the usual Fused Lasso estimator and its quantile version have been studied before; our bound appears to be new. This is because all previous works bound a global loss function like the sum of squared error, or a sum of Huber losses in the case of quantile regression in Padilla and Chatterjee (2021). Clearly, element wise bounds are stronger than global loss error bounds as it reveals how the loss behaves locally at each point. Our element wise error bound also has a clean and explicit dependence on the tuning parameter $\\\\lambda$ which informs the user of a good choice of $\\\\lambda$. In addition, our bound is nonasymptotic with explicit constants and is able to recover almost all the known results for Fused Lasso (both mean and quantile regression) with additional improvements in some cases.\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/22-bej1557\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1557","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Element-wise estimation error of generalized Fused Lasso
The main result of this article is that we obtain an elementwise error bound for the Fused Lasso estimator for any general convex loss function $\rho$. We then focus on the special cases when either $\rho$ is the square loss function (for mean regression) or is the quantile loss function (for quantile regression) for which we derive new pointwise error bounds. Even though error bounds for the usual Fused Lasso estimator and its quantile version have been studied before; our bound appears to be new. This is because all previous works bound a global loss function like the sum of squared error, or a sum of Huber losses in the case of quantile regression in Padilla and Chatterjee (2021). Clearly, element wise bounds are stronger than global loss error bounds as it reveals how the loss behaves locally at each point. Our element wise error bound also has a clean and explicit dependence on the tuning parameter $\lambda$ which informs the user of a good choice of $\lambda$. In addition, our bound is nonasymptotic with explicit constants and is able to recover almost all the known results for Fused Lasso (both mean and quantile regression) with additional improvements in some cases.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.