Muhammad Abdullah , Irfan Ali Sabir , Iftikhar Hussain Shah , Mateen Sajid , Xunju Liu , Songtao Jiu , Muhammad Aamir Manzoor , Caixi Zhang
{"title":"基因复制在甜樱桃分化中的作用","authors":"Muhammad Abdullah , Irfan Ali Sabir , Iftikhar Hussain Shah , Mateen Sajid , Xunju Liu , Songtao Jiu , Muhammad Aamir Manzoor , Caixi Zhang","doi":"10.1016/j.plgene.2022.100379","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Gene duplication<span> is a drive for genetic complexity and diversity, and can occur by several mechanisms. The plant phenotypic evolution is assumed to have been aided by whole-genome duplication. WGD (Whole genome duplication) events are often separated by tens of millions of years, resulting in a lack of a constant supply of variations for adaptation to ever-changing environments. </span></span>Sweet cherry is a major </span>Rosaceae<span><span> fruit crop<span>, however, it's uncertain whether distinct forms of gene duplications throughout evolution in sweet cherry where whole genome has been duplicated. In this study, genes were identified that derived from transposed, tandem, whole-genome, dispersed and proximal duplication events and differ in abundance, selection pressures, uninterrupted genes, expression divergence, as well as Go ontology enrichment analysis, and duplicate gene evolution were investigated using integrated large-scale genome and </span></span>transcriptome<span> datasets. The proximal and tandem mode of duplication expressed extreme conserve expression along with slow divergence, while transposed genes show higher regulatory divergence expression than other modes of duplication. We also examined at the development and expansion of gene families involved in the sugar metabolism pathways and organic acid, which are associated to the flavour and quality of sweet cherry fruit. The current study provides knowledge on the evolutionary fate and consequences of duplicate genes, providing the groundwork for future research into the dynamic evolution of duplicate genes.</span></span></p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"32 ","pages":"Article 100379"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The role of gene duplication in the divergence of the sweet cherry\",\"authors\":\"Muhammad Abdullah , Irfan Ali Sabir , Iftikhar Hussain Shah , Mateen Sajid , Xunju Liu , Songtao Jiu , Muhammad Aamir Manzoor , Caixi Zhang\",\"doi\":\"10.1016/j.plgene.2022.100379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Gene duplication<span> is a drive for genetic complexity and diversity, and can occur by several mechanisms. The plant phenotypic evolution is assumed to have been aided by whole-genome duplication. WGD (Whole genome duplication) events are often separated by tens of millions of years, resulting in a lack of a constant supply of variations for adaptation to ever-changing environments. </span></span>Sweet cherry is a major </span>Rosaceae<span><span> fruit crop<span>, however, it's uncertain whether distinct forms of gene duplications throughout evolution in sweet cherry where whole genome has been duplicated. In this study, genes were identified that derived from transposed, tandem, whole-genome, dispersed and proximal duplication events and differ in abundance, selection pressures, uninterrupted genes, expression divergence, as well as Go ontology enrichment analysis, and duplicate gene evolution were investigated using integrated large-scale genome and </span></span>transcriptome<span> datasets. The proximal and tandem mode of duplication expressed extreme conserve expression along with slow divergence, while transposed genes show higher regulatory divergence expression than other modes of duplication. We also examined at the development and expansion of gene families involved in the sugar metabolism pathways and organic acid, which are associated to the flavour and quality of sweet cherry fruit. The current study provides knowledge on the evolutionary fate and consequences of duplicate genes, providing the groundwork for future research into the dynamic evolution of duplicate genes.</span></span></p></div>\",\"PeriodicalId\":38041,\"journal\":{\"name\":\"Plant Gene\",\"volume\":\"32 \",\"pages\":\"Article 100379\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352407322000294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407322000294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The role of gene duplication in the divergence of the sweet cherry
Gene duplication is a drive for genetic complexity and diversity, and can occur by several mechanisms. The plant phenotypic evolution is assumed to have been aided by whole-genome duplication. WGD (Whole genome duplication) events are often separated by tens of millions of years, resulting in a lack of a constant supply of variations for adaptation to ever-changing environments. Sweet cherry is a major Rosaceae fruit crop, however, it's uncertain whether distinct forms of gene duplications throughout evolution in sweet cherry where whole genome has been duplicated. In this study, genes were identified that derived from transposed, tandem, whole-genome, dispersed and proximal duplication events and differ in abundance, selection pressures, uninterrupted genes, expression divergence, as well as Go ontology enrichment analysis, and duplicate gene evolution were investigated using integrated large-scale genome and transcriptome datasets. The proximal and tandem mode of duplication expressed extreme conserve expression along with slow divergence, while transposed genes show higher regulatory divergence expression than other modes of duplication. We also examined at the development and expansion of gene families involved in the sugar metabolism pathways and organic acid, which are associated to the flavour and quality of sweet cherry fruit. The current study provides knowledge on the evolutionary fate and consequences of duplicate genes, providing the groundwork for future research into the dynamic evolution of duplicate genes.
Plant GeneAgricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍:
Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.