{"title":"生物分子模拟揭示10种小分子候选药物与sars - cov - 23clpro的结合动力学","authors":"Yifei Zhou, Xubo Lin","doi":"10.1016/j.medntd.2023.100257","DOIUrl":null,"url":null,"abstract":"<div><p>3CL protease (3CLpro) is the main protease (Mpro) found in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which cuts the coronavirus polyprotein at eleven conserved sites and is essential for the virus replication. Therefore, 3CLpro has been widely used as a promising drug target. Many small-molecule drug candidates targeting 3CLpro have been proposed to inhibit the virus replication. In this work, we aim to reveal detailed interactions between ten small candidate molecules with extensive attention and 3CLpro using molecular docking and molecular dynamics simulations. First, we identified the possible binding sites of these candidate molecules on 3CLpro via molecular docking. Then, a series of 100 ns all-atom molecular dynamics simulations of strongest binding modes were performed to further evaluate the dynamical interactions between the molecules and 3CLpro in detail. Last, the binding free energy of these molecules on 3CLpro was calculated using MM/PBSA calculation, where the contribution of key amino acids was highlighted. The binding kinetics revealed in this work may provide useful insights into the action mechanism and applicability of these small-molecule drug candidates.</p></div>","PeriodicalId":33783,"journal":{"name":"Medicine in Novel Technology and Devices","volume":"20 ","pages":"Article 100257"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binding kinetics of ten small-molecule drug candidates on SARS-CoV-2 3CLpro revealed by biomolecular simulations\",\"authors\":\"Yifei Zhou, Xubo Lin\",\"doi\":\"10.1016/j.medntd.2023.100257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>3CL protease (3CLpro) is the main protease (Mpro) found in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which cuts the coronavirus polyprotein at eleven conserved sites and is essential for the virus replication. Therefore, 3CLpro has been widely used as a promising drug target. Many small-molecule drug candidates targeting 3CLpro have been proposed to inhibit the virus replication. In this work, we aim to reveal detailed interactions between ten small candidate molecules with extensive attention and 3CLpro using molecular docking and molecular dynamics simulations. First, we identified the possible binding sites of these candidate molecules on 3CLpro via molecular docking. Then, a series of 100 ns all-atom molecular dynamics simulations of strongest binding modes were performed to further evaluate the dynamical interactions between the molecules and 3CLpro in detail. Last, the binding free energy of these molecules on 3CLpro was calculated using MM/PBSA calculation, where the contribution of key amino acids was highlighted. The binding kinetics revealed in this work may provide useful insights into the action mechanism and applicability of these small-molecule drug candidates.</p></div>\",\"PeriodicalId\":33783,\"journal\":{\"name\":\"Medicine in Novel Technology and Devices\",\"volume\":\"20 \",\"pages\":\"Article 100257\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicine in Novel Technology and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590093523000528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine in Novel Technology and Devices","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590093523000528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Binding kinetics of ten small-molecule drug candidates on SARS-CoV-2 3CLpro revealed by biomolecular simulations
3CL protease (3CLpro) is the main protease (Mpro) found in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which cuts the coronavirus polyprotein at eleven conserved sites and is essential for the virus replication. Therefore, 3CLpro has been widely used as a promising drug target. Many small-molecule drug candidates targeting 3CLpro have been proposed to inhibit the virus replication. In this work, we aim to reveal detailed interactions between ten small candidate molecules with extensive attention and 3CLpro using molecular docking and molecular dynamics simulations. First, we identified the possible binding sites of these candidate molecules on 3CLpro via molecular docking. Then, a series of 100 ns all-atom molecular dynamics simulations of strongest binding modes were performed to further evaluate the dynamical interactions between the molecules and 3CLpro in detail. Last, the binding free energy of these molecules on 3CLpro was calculated using MM/PBSA calculation, where the contribution of key amino acids was highlighted. The binding kinetics revealed in this work may provide useful insights into the action mechanism and applicability of these small-molecule drug candidates.