Suhyung Park, Liyong Chen, Jennifer Townsend, Hyunyeol Lee, D. Feinberg
{"title":"同时多VENC和同时多切片相位对比磁共振成像","authors":"Suhyung Park, Liyong Chen, Jennifer Townsend, Hyunyeol Lee, D. Feinberg","doi":"10.1109/TMI.2019.2934422","DOIUrl":null,"url":null,"abstract":"This work develops a novel, simultaneous multi-VENC and simultaneous multi-slice (SMV+SMS) imaging in a single acquisition for robust phase contrast (PC) MRI. To this end, the pulse sequence was designed to permit concurrent acquisition of multiple VENCs as well as multiple slices on a shared frequency encoding gradient, in which each effective echo time for multiple VENCs was controlled by adjusting net gradient area while multiple slices were simultaneously excited by employing multiband resonance frequency (RF) pulses. For VENC and slice separation, RF phase cycling and gradient blip were applied to create both inter-VENC and inter-slice shifts along phase encoding direction, respectively. With an alternating RF phase cycling that generates oscillating steady-state with low and high signal amplitude, the acquired multi-VENC k-space was reformulated into 3D undersampled k-space by generating a virtual dimension along VENC direction for modulation induced artifact reduction. In vivo studies were conducted to validate the feasibility of the proposed method in comparison with conventional PC MRI. The proposed method shows comparable performance to the conventional method in delineating both low and high flow velocities across cardiac phases with high spatial coverage without apparent artifacts. In the presence of high flow velocity that is above the VENC value, the proposed method exhibits clear depiction of flow signals over conventional method, thereby leading to high VNR image with improved velocity dynamic range.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"39 1","pages":"742-752"},"PeriodicalIF":8.9000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMI.2019.2934422","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Multi-VENC and Simultaneous Multi-Slice Phase Contrast Magnetic Resonance Imaging\",\"authors\":\"Suhyung Park, Liyong Chen, Jennifer Townsend, Hyunyeol Lee, D. Feinberg\",\"doi\":\"10.1109/TMI.2019.2934422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops a novel, simultaneous multi-VENC and simultaneous multi-slice (SMV+SMS) imaging in a single acquisition for robust phase contrast (PC) MRI. To this end, the pulse sequence was designed to permit concurrent acquisition of multiple VENCs as well as multiple slices on a shared frequency encoding gradient, in which each effective echo time for multiple VENCs was controlled by adjusting net gradient area while multiple slices were simultaneously excited by employing multiband resonance frequency (RF) pulses. For VENC and slice separation, RF phase cycling and gradient blip were applied to create both inter-VENC and inter-slice shifts along phase encoding direction, respectively. With an alternating RF phase cycling that generates oscillating steady-state with low and high signal amplitude, the acquired multi-VENC k-space was reformulated into 3D undersampled k-space by generating a virtual dimension along VENC direction for modulation induced artifact reduction. In vivo studies were conducted to validate the feasibility of the proposed method in comparison with conventional PC MRI. The proposed method shows comparable performance to the conventional method in delineating both low and high flow velocities across cardiac phases with high spatial coverage without apparent artifacts. In the presence of high flow velocity that is above the VENC value, the proposed method exhibits clear depiction of flow signals over conventional method, thereby leading to high VNR image with improved velocity dynamic range.\",\"PeriodicalId\":13418,\"journal\":{\"name\":\"IEEE Transactions on Medical Imaging\",\"volume\":\"39 1\",\"pages\":\"742-752\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMI.2019.2934422\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Medical Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2019.2934422\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Medical Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TMI.2019.2934422","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Simultaneous Multi-VENC and Simultaneous Multi-Slice Phase Contrast Magnetic Resonance Imaging
This work develops a novel, simultaneous multi-VENC and simultaneous multi-slice (SMV+SMS) imaging in a single acquisition for robust phase contrast (PC) MRI. To this end, the pulse sequence was designed to permit concurrent acquisition of multiple VENCs as well as multiple slices on a shared frequency encoding gradient, in which each effective echo time for multiple VENCs was controlled by adjusting net gradient area while multiple slices were simultaneously excited by employing multiband resonance frequency (RF) pulses. For VENC and slice separation, RF phase cycling and gradient blip were applied to create both inter-VENC and inter-slice shifts along phase encoding direction, respectively. With an alternating RF phase cycling that generates oscillating steady-state with low and high signal amplitude, the acquired multi-VENC k-space was reformulated into 3D undersampled k-space by generating a virtual dimension along VENC direction for modulation induced artifact reduction. In vivo studies were conducted to validate the feasibility of the proposed method in comparison with conventional PC MRI. The proposed method shows comparable performance to the conventional method in delineating both low and high flow velocities across cardiac phases with high spatial coverage without apparent artifacts. In the presence of high flow velocity that is above the VENC value, the proposed method exhibits clear depiction of flow signals over conventional method, thereby leading to high VNR image with improved velocity dynamic range.
期刊介绍:
The IEEE Transactions on Medical Imaging (T-MI) is a journal that welcomes the submission of manuscripts focusing on various aspects of medical imaging. The journal encourages the exploration of body structure, morphology, and function through different imaging techniques, including ultrasound, X-rays, magnetic resonance, radionuclides, microwaves, and optical methods. It also promotes contributions related to cell and molecular imaging, as well as all forms of microscopy.
T-MI publishes original research papers that cover a wide range of topics, including but not limited to novel acquisition techniques, medical image processing and analysis, visualization and performance, pattern recognition, machine learning, and other related methods. The journal particularly encourages highly technical studies that offer new perspectives. By emphasizing the unification of medicine, biology, and imaging, T-MI seeks to bridge the gap between instrumentation, hardware, software, mathematics, physics, biology, and medicine by introducing new analysis methods.
While the journal welcomes strong application papers that describe novel methods, it directs papers that focus solely on important applications using medically adopted or well-established methods without significant innovation in methodology to other journals. T-MI is indexed in Pubmed® and Medline®, which are products of the United States National Library of Medicine.