Yitian Chi, Narayanan Murali, Tianqi Zheng, Jingke Liu, Xiaochun Li
{"title":"纳米处理铝合金的线弧增材制造2024","authors":"Yitian Chi, Narayanan Murali, Tianqi Zheng, Jingke Liu, Xiaochun Li","doi":"10.1089/3dp.2022.0150","DOIUrl":null,"url":null,"abstract":"<p><p>With high strength and good fatigue resistance, Al-Cu alloys such as AA2024 are widely used in the aerospace and automotive industries. However, the system's susceptibility to hot cracking and other solidification defects hinders its development in metal additive manufacturing (AM). A nano-treated AA2024 deposition, with the addition of TiC nanoparticles, is successfully additively manufactured without cracks. Microstructural analysis suggests nanoparticles not only mitigate the hot cracking sensitivity but also significantly refine and homogenize grains, resulting in an average size of 23.2 ± 0.4 μm. Microhardness profiles show consistent mechanical performance along the build direction, regardless of cyclic thermal exposure. Finally, excellent tensile strength and elongation up to 428 MPa and 7.4% were achieved after heat treatment. The combined results show a great promise of nano-treating in high-strength aluminum AM.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057550/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wire-Arc Additive Manufacturing of Nano-Treated Aluminum Alloy 2024.\",\"authors\":\"Yitian Chi, Narayanan Murali, Tianqi Zheng, Jingke Liu, Xiaochun Li\",\"doi\":\"10.1089/3dp.2022.0150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With high strength and good fatigue resistance, Al-Cu alloys such as AA2024 are widely used in the aerospace and automotive industries. However, the system's susceptibility to hot cracking and other solidification defects hinders its development in metal additive manufacturing (AM). A nano-treated AA2024 deposition, with the addition of TiC nanoparticles, is successfully additively manufactured without cracks. Microstructural analysis suggests nanoparticles not only mitigate the hot cracking sensitivity but also significantly refine and homogenize grains, resulting in an average size of 23.2 ± 0.4 μm. Microhardness profiles show consistent mechanical performance along the build direction, regardless of cyclic thermal exposure. Finally, excellent tensile strength and elongation up to 428 MPa and 7.4% were achieved after heat treatment. The combined results show a great promise of nano-treating in high-strength aluminum AM.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057550/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0150\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0150","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Wire-Arc Additive Manufacturing of Nano-Treated Aluminum Alloy 2024.
With high strength and good fatigue resistance, Al-Cu alloys such as AA2024 are widely used in the aerospace and automotive industries. However, the system's susceptibility to hot cracking and other solidification defects hinders its development in metal additive manufacturing (AM). A nano-treated AA2024 deposition, with the addition of TiC nanoparticles, is successfully additively manufactured without cracks. Microstructural analysis suggests nanoparticles not only mitigate the hot cracking sensitivity but also significantly refine and homogenize grains, resulting in an average size of 23.2 ± 0.4 μm. Microhardness profiles show consistent mechanical performance along the build direction, regardless of cyclic thermal exposure. Finally, excellent tensile strength and elongation up to 428 MPa and 7.4% were achieved after heat treatment. The combined results show a great promise of nano-treating in high-strength aluminum AM.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.