关于有界基的密度

IF 0.7 3区 数学 Q2 MATHEMATICS
Jin-Hui Fang
{"title":"关于有界基的密度","authors":"Jin-Hui Fang","doi":"10.1017/S0013091523000421","DOIUrl":null,"url":null,"abstract":"Abstract For a nonempty set A of integers and an integer n, let $r_{A}(n)$ be the number of representations of n in the form $n=a+a'$, where $a\\leqslant a'$ and $a, a'\\in A$, and $d_{A}(n)$ be the number of representations of n in the form $n=a-a'$, where $a, a'\\in A$. The binary support of a positive integer n is defined as the subset S(n) of nonnegative integers consisting of the exponents in the binary expansion of n, i.e., $n=\\sum_{i\\in S(n)} 2^i$, $S(-n)=-S(n)$ and $S(0)=\\emptyset$. For real number x, let $A(-x,x)$ be the number of elements $a\\in A$ with $-x\\leqslant a\\leqslant x$. The famous Erdős-Turán Conjecture states that if A is a set of positive integers such that $r_A(n)\\geqslant 1$ for all sufficiently large n, then $\\limsup_{n\\rightarrow\\infty}r_A(n)=\\infty$. In 2004, Nešetřil and Serra initially introduced the notation of “bounded” property and confirmed the Erdős-Turán conjecture for a class of bounded bases. They also proved that, there exists a set A of integers satisfying $r_A(n)=1$ for all integers n and $|S(x)\\bigcup S(y)|\\leqslant 4|S(x+y)|$ for $x,y\\in A$. On the other hand, Nathanson proved that there exists a set A of integers such that $r_A(n)=1$ for all integers n and $2\\log x/\\log 5+c_1\\leqslant A(-x,x)\\leqslant 2\\log x/\\log 3+c_2$ for all $x\\geqslant 1$, where $c_1,c_2$ are absolute constants. In this paper, following these results, we prove that, there exists a set A of integers such that: $r_A(n)=1$ for all integers n and $d_A(n)=1$ for all positive integers n, $|S(x)\\bigcup S(y)|\\leqslant 4|S(x+y)|$ for $x,y\\in A$ and $A(-x,x) \\gt (4/\\log 5)\\log\\log x+c$ for all $x\\geqslant 1$, where c is an absolute constant. Furthermore, we also construct a family of arbitrarily spare such sets A.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the density of bounded bases\",\"authors\":\"Jin-Hui Fang\",\"doi\":\"10.1017/S0013091523000421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a nonempty set A of integers and an integer n, let $r_{A}(n)$ be the number of representations of n in the form $n=a+a'$, where $a\\\\leqslant a'$ and $a, a'\\\\in A$, and $d_{A}(n)$ be the number of representations of n in the form $n=a-a'$, where $a, a'\\\\in A$. The binary support of a positive integer n is defined as the subset S(n) of nonnegative integers consisting of the exponents in the binary expansion of n, i.e., $n=\\\\sum_{i\\\\in S(n)} 2^i$, $S(-n)=-S(n)$ and $S(0)=\\\\emptyset$. For real number x, let $A(-x,x)$ be the number of elements $a\\\\in A$ with $-x\\\\leqslant a\\\\leqslant x$. The famous Erdős-Turán Conjecture states that if A is a set of positive integers such that $r_A(n)\\\\geqslant 1$ for all sufficiently large n, then $\\\\limsup_{n\\\\rightarrow\\\\infty}r_A(n)=\\\\infty$. In 2004, Nešetřil and Serra initially introduced the notation of “bounded” property and confirmed the Erdős-Turán conjecture for a class of bounded bases. They also proved that, there exists a set A of integers satisfying $r_A(n)=1$ for all integers n and $|S(x)\\\\bigcup S(y)|\\\\leqslant 4|S(x+y)|$ for $x,y\\\\in A$. On the other hand, Nathanson proved that there exists a set A of integers such that $r_A(n)=1$ for all integers n and $2\\\\log x/\\\\log 5+c_1\\\\leqslant A(-x,x)\\\\leqslant 2\\\\log x/\\\\log 3+c_2$ for all $x\\\\geqslant 1$, where $c_1,c_2$ are absolute constants. In this paper, following these results, we prove that, there exists a set A of integers such that: $r_A(n)=1$ for all integers n and $d_A(n)=1$ for all positive integers n, $|S(x)\\\\bigcup S(y)|\\\\leqslant 4|S(x+y)|$ for $x,y\\\\in A$ and $A(-x,x) \\\\gt (4/\\\\log 5)\\\\log\\\\log x+c$ for all $x\\\\geqslant 1$, where c is an absolute constant. Furthermore, we also construct a family of arbitrarily spare such sets A.\",\"PeriodicalId\":20586,\"journal\":{\"name\":\"Proceedings of the Edinburgh Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Edinburgh Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0013091523000421\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000421","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一个由整数和整数n组成的非空集合a,设$r_{A}(n)$为n以$n=a+a'$形式表示的个数,其中$a\leqslant a'$和$a, a'\in A$, $d_{A}(n)$为n以$n=a-a'$形式表示的个数,其中$a, a'\in A$。正整数n的二进制支持定义为n的二进制展开式中的指数组成的非负整数子集S(n),即$n=\sum_{i\in S(n)} 2^i$, $S(-n)=-S(n)$和$S(0)=\emptyset$。对于实数x,设$A(-x,x)$为含有$-x\leqslant a\leqslant x$的元素个数$a\in A$。著名的Erdős-Turán猜想指出,如果A是一组正整数,使得$r_A(n)\geqslant 1$对于所有足够大的n,那么$\limsup_{n\rightarrow\infty}r_A(n)=\infty$。2004年,Nešetřil和Serra首次引入了“有界”性质的符号,并证实了一类有界基的Erdős-Turán猜想。他们还证明了存在一个整数集合a,它对所有整数n满足$r_A(n)=1$,对$x,y\in A$满足$|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$。另一方面,Nathanson证明了存在一个整数集合a,使得$r_A(n)=1$对于所有整数n和$2\log x/\log 5+c_1\leqslant A(-x,x)\leqslant 2\log x/\log 3+c_2$对于所有$x\geqslant 1$,其中$c_1,c_2$是绝对常数。本文根据这些结果,证明了存在一个整数集合a,使得:对于所有整数n $r_A(n)=1$,对于所有正整数n $d_A(n)=1$,对于$x,y\in A$$|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$,对于所有$x\geqslant 1$$A(-x,x) \gt (4/\log 5)\log\log x+c$,其中c是一个绝对常数。进一步,我们还构造了一个任意空闲的这样的集合a族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the density of bounded bases
Abstract For a nonempty set A of integers and an integer n, let $r_{A}(n)$ be the number of representations of n in the form $n=a+a'$, where $a\leqslant a'$ and $a, a'\in A$, and $d_{A}(n)$ be the number of representations of n in the form $n=a-a'$, where $a, a'\in A$. The binary support of a positive integer n is defined as the subset S(n) of nonnegative integers consisting of the exponents in the binary expansion of n, i.e., $n=\sum_{i\in S(n)} 2^i$, $S(-n)=-S(n)$ and $S(0)=\emptyset$. For real number x, let $A(-x,x)$ be the number of elements $a\in A$ with $-x\leqslant a\leqslant x$. The famous Erdős-Turán Conjecture states that if A is a set of positive integers such that $r_A(n)\geqslant 1$ for all sufficiently large n, then $\limsup_{n\rightarrow\infty}r_A(n)=\infty$. In 2004, Nešetřil and Serra initially introduced the notation of “bounded” property and confirmed the Erdős-Turán conjecture for a class of bounded bases. They also proved that, there exists a set A of integers satisfying $r_A(n)=1$ for all integers n and $|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$ for $x,y\in A$. On the other hand, Nathanson proved that there exists a set A of integers such that $r_A(n)=1$ for all integers n and $2\log x/\log 5+c_1\leqslant A(-x,x)\leqslant 2\log x/\log 3+c_2$ for all $x\geqslant 1$, where $c_1,c_2$ are absolute constants. In this paper, following these results, we prove that, there exists a set A of integers such that: $r_A(n)=1$ for all integers n and $d_A(n)=1$ for all positive integers n, $|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$ for $x,y\in A$ and $A(-x,x) \gt (4/\log 5)\log\log x+c$ for all $x\geqslant 1$, where c is an absolute constant. Furthermore, we also construct a family of arbitrarily spare such sets A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信