闭流形上的环平均和传递算子

IF 0.8 Q2 MATHEMATICS
Alexander Adam, V. Baladi
{"title":"闭流形上的环平均和传递算子","authors":"Alexander Adam, V. Baladi","doi":"10.2140/tunis.2022.4.387","DOIUrl":null,"url":null,"abstract":"We study semigroups of weighted transfer operators for Anosov flows of regularity C^r, r>1, on compact manifolds without boundary. We construct an anisotropic Banach space on which the resolvent of the generator is quasi-compact and where the upper bound on the essential spectral radius depends continuously on the regularity. We apply this result to the ergodic average of the horocycle flow for C^3 contact Anosov flows in dimension three.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Horocycle averages on closed manifolds and transfer operators\",\"authors\":\"Alexander Adam, V. Baladi\",\"doi\":\"10.2140/tunis.2022.4.387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study semigroups of weighted transfer operators for Anosov flows of regularity C^r, r>1, on compact manifolds without boundary. We construct an anisotropic Banach space on which the resolvent of the generator is quasi-compact and where the upper bound on the essential spectral radius depends continuously on the regularity. We apply this result to the ergodic average of the horocycle flow for C^3 contact Anosov flows in dimension three.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2022.4.387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

研究了无边界紧致流形上正则性C^r, r>1的Anosov流的加权转移算子半群。构造了一个各向异性的Banach空间,在该空间上发生器的解是拟紧的,其本质谱半径的上界连续依赖于正则性。我们将这一结果应用于三维C^3接触阿诺索夫流的环流遍历平均。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Horocycle averages on closed manifolds and transfer operators
We study semigroups of weighted transfer operators for Anosov flows of regularity C^r, r>1, on compact manifolds without boundary. We construct an anisotropic Banach space on which the resolvent of the generator is quasi-compact and where the upper bound on the essential spectral radius depends continuously on the regularity. We apply this result to the ergodic average of the horocycle flow for C^3 contact Anosov flows in dimension three.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信