氢化镁形成的能量条件

Q3 Materials Science
В.Н. Аптуков, Н.Е. Скрябина, Д. Фрушар, Valery N. Aptukov, N. Skryabina, D. Fruchart
{"title":"氢化镁形成的能量条件","authors":"В.Н. Аптуков, Н.Е. Скрябина, Д. Фрушар, Valery N. Aptukov, N. Skryabina, D. Fruchart","doi":"10.15593/perm.mech/2022.2.03","DOIUrl":null,"url":null,"abstract":"In the present article we consider a novel approach to analyze the processes and kinetics of transformation of magnesium to hydride. Here approach consists to take into account the contributions of mechanics factors such as the work of external forces, the energy of elastic deformation and the energy required to form a unit volume nucleate of new phase. Request for a stable state of either a mechanical system or thermodynamic conditions governing a phase transformation, is to determine a minimum value to the total energy of the system. Analyzing the stability conditions needed when forming a metal hydride nucleus at constant temperature and pressure needs to consider the following: - the volumetric effects at the phase transformation, - the ratio of elastic moduli of metal to hydride phase, - the work spent at the formation of a unit volume of hydride. Under these considerations, it was shown that the most energetically favorable is forming an ellipsoidal hydride nucleus. Moreover, the larger difference in semi-axes, the more stable ellipsoid nucleus. Then, calculations of the stress-strain level states on both sides of the metal/hydride interface have been carried out. It was shown that the near-boundary range during the phase transformation is the place where accumulate inhomogeneous and intense stresses, which can contribute to two parallel processes. Firstly, increase of hydrogen concentration could appear in the distorted area. Secondly, a local accumulation of incoherent boundaries in between the two phases will develop stresses exceeding by more twice the shear yield stress. The presence of these compression zones could give rise new defects such as dislocations, micro-cracks. Consequently this should lead to decrease in magnitude of the powder of material.","PeriodicalId":38176,"journal":{"name":"PNRPU Mechanics Bulletin","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy conditions for the formation of magnesium hydride\",\"authors\":\"В.Н. Аптуков, Н.Е. Скрябина, Д. Фрушар, Valery N. Aptukov, N. Skryabina, D. Fruchart\",\"doi\":\"10.15593/perm.mech/2022.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article we consider a novel approach to analyze the processes and kinetics of transformation of magnesium to hydride. Here approach consists to take into account the contributions of mechanics factors such as the work of external forces, the energy of elastic deformation and the energy required to form a unit volume nucleate of new phase. Request for a stable state of either a mechanical system or thermodynamic conditions governing a phase transformation, is to determine a minimum value to the total energy of the system. Analyzing the stability conditions needed when forming a metal hydride nucleus at constant temperature and pressure needs to consider the following: - the volumetric effects at the phase transformation, - the ratio of elastic moduli of metal to hydride phase, - the work spent at the formation of a unit volume of hydride. Under these considerations, it was shown that the most energetically favorable is forming an ellipsoidal hydride nucleus. Moreover, the larger difference in semi-axes, the more stable ellipsoid nucleus. Then, calculations of the stress-strain level states on both sides of the metal/hydride interface have been carried out. It was shown that the near-boundary range during the phase transformation is the place where accumulate inhomogeneous and intense stresses, which can contribute to two parallel processes. Firstly, increase of hydrogen concentration could appear in the distorted area. Secondly, a local accumulation of incoherent boundaries in between the two phases will develop stresses exceeding by more twice the shear yield stress. The presence of these compression zones could give rise new defects such as dislocations, micro-cracks. Consequently this should lead to decrease in magnitude of the powder of material.\",\"PeriodicalId\":38176,\"journal\":{\"name\":\"PNRPU Mechanics Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNRPU Mechanics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15593/perm.mech/2022.2.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNRPU Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15593/perm.mech/2022.2.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一种新的方法来分析镁转化为氢化物的过程和动力学。这种方法包括考虑外力做功、弹性变形能量和形成单位体积新相核所需能量等力学因素的贡献。对机械系统或控制相变的热力学条件的稳定状态的要求是确定系统总能量的最小值。分析在恒温常压下形成金属氢化物核所需的稳定性条件需要考虑以下因素:—相变时的体积效应,—金属与氢化物相的弹性模量之比,—单位体积氢化物形成时所花费的功。在这些考虑下,表明在能量上最有利的是形成一个椭球状的氢化物核。半轴差越大,椭球核越稳定。然后,对金属/氢化物界面两侧的应力应变水平状态进行了计算。结果表明,相变过程中的近边界区域是不均匀应力和强应力聚集的区域,形成了两个平行过程。首先,畸变区出现氢浓度升高。其次,两相之间非相干边界的局部积累将产生超过剪切屈服应力两倍以上的应力。这些压缩区的存在会产生新的缺陷,如位错、微裂纹等。因此,这将导致材料的粉末量的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy conditions for the formation of magnesium hydride
In the present article we consider a novel approach to analyze the processes and kinetics of transformation of magnesium to hydride. Here approach consists to take into account the contributions of mechanics factors such as the work of external forces, the energy of elastic deformation and the energy required to form a unit volume nucleate of new phase. Request for a stable state of either a mechanical system or thermodynamic conditions governing a phase transformation, is to determine a minimum value to the total energy of the system. Analyzing the stability conditions needed when forming a metal hydride nucleus at constant temperature and pressure needs to consider the following: - the volumetric effects at the phase transformation, - the ratio of elastic moduli of metal to hydride phase, - the work spent at the formation of a unit volume of hydride. Under these considerations, it was shown that the most energetically favorable is forming an ellipsoidal hydride nucleus. Moreover, the larger difference in semi-axes, the more stable ellipsoid nucleus. Then, calculations of the stress-strain level states on both sides of the metal/hydride interface have been carried out. It was shown that the near-boundary range during the phase transformation is the place where accumulate inhomogeneous and intense stresses, which can contribute to two parallel processes. Firstly, increase of hydrogen concentration could appear in the distorted area. Secondly, a local accumulation of incoherent boundaries in between the two phases will develop stresses exceeding by more twice the shear yield stress. The presence of these compression zones could give rise new defects such as dislocations, micro-cracks. Consequently this should lead to decrease in magnitude of the powder of material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PNRPU Mechanics Bulletin
PNRPU Mechanics Bulletin Materials Science-Materials Science (miscellaneous)
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信