{"title":"利用混合局部谐振器阵列改善双面板结构的隔声性能","authors":"RI Kyong-Su, Myong-jin Kim","doi":"10.24425/aoa.2022.142907","DOIUrl":null,"url":null,"abstract":"In this paper, we present one approach to improve the soundproofing performance of the double-panel structure (DPS) in the entire audible frequencies, in which two kinds of local resonances, the breathing-type resonance and the Helmholtz resonance, are combined. The thin ring resonator row and slit-type resonator (Helmholtz resonator) row are inserted between two panels of DPS together. Overlapping of the band gaps due to the individual resonances gives a wide and high band gap of sound transmission in the low frequency range. At the same time, the Bragg-type band gap is created by the structural periodicity of the scatterers in the high audible frequency range. In addition, the number of scatterer rows and the filling factor are investigated with regard to the sound insulation of DPS with sonic crystals (SCs). Consequently, the hybrid SC has the potential of increasing the soundproofing performance of DPS in the audible frequency range above 1 kHz by about 15 dB on average compared to DPS filled only with glass wool between two panels, while decreasing the total thickness and mass compared to the counterparts with the other type of local resonant sonic crystal.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Sound Insulation Through Double-Panel Structure by Using Hybrid Local Resonator Array\",\"authors\":\"RI Kyong-Su, Myong-jin Kim\",\"doi\":\"10.24425/aoa.2022.142907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present one approach to improve the soundproofing performance of the double-panel structure (DPS) in the entire audible frequencies, in which two kinds of local resonances, the breathing-type resonance and the Helmholtz resonance, are combined. The thin ring resonator row and slit-type resonator (Helmholtz resonator) row are inserted between two panels of DPS together. Overlapping of the band gaps due to the individual resonances gives a wide and high band gap of sound transmission in the low frequency range. At the same time, the Bragg-type band gap is created by the structural periodicity of the scatterers in the high audible frequency range. In addition, the number of scatterer rows and the filling factor are investigated with regard to the sound insulation of DPS with sonic crystals (SCs). Consequently, the hybrid SC has the potential of increasing the soundproofing performance of DPS in the audible frequency range above 1 kHz by about 15 dB on average compared to DPS filled only with glass wool between two panels, while decreasing the total thickness and mass compared to the counterparts with the other type of local resonant sonic crystal.\",\"PeriodicalId\":8149,\"journal\":{\"name\":\"Archives of Acoustics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.24425/aoa.2022.142907\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2022.142907","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Improvement of Sound Insulation Through Double-Panel Structure by Using Hybrid Local Resonator Array
In this paper, we present one approach to improve the soundproofing performance of the double-panel structure (DPS) in the entire audible frequencies, in which two kinds of local resonances, the breathing-type resonance and the Helmholtz resonance, are combined. The thin ring resonator row and slit-type resonator (Helmholtz resonator) row are inserted between two panels of DPS together. Overlapping of the band gaps due to the individual resonances gives a wide and high band gap of sound transmission in the low frequency range. At the same time, the Bragg-type band gap is created by the structural periodicity of the scatterers in the high audible frequency range. In addition, the number of scatterer rows and the filling factor are investigated with regard to the sound insulation of DPS with sonic crystals (SCs). Consequently, the hybrid SC has the potential of increasing the soundproofing performance of DPS in the audible frequency range above 1 kHz by about 15 dB on average compared to DPS filled only with glass wool between two panels, while decreasing the total thickness and mass compared to the counterparts with the other type of local resonant sonic crystal.
期刊介绍:
Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like:
acoustical measurements and instrumentation,
acoustics of musics,
acousto-optics,
architectural, building and environmental acoustics,
bioacoustics,
electroacoustics,
linear and nonlinear acoustics,
noise and vibration,
physical and chemical effects of sound,
physiological acoustics,
psychoacoustics,
quantum acoustics,
speech processing and communication systems,
speech production and perception,
transducers,
ultrasonics,
underwater acoustics.