生物玻璃和羟基磷灰石填充支架的制备和表征。

Laura Mendoza-Cerezo, J. Rodríguez-Rego, Anabel Soriano-Carrera, Alfonso C. Marcos-Romero, A. Macías-García
{"title":"生物玻璃和羟基磷灰石填充支架的制备和表征。","authors":"Laura Mendoza-Cerezo, J. Rodríguez-Rego, Anabel Soriano-Carrera, Alfonso C. Marcos-Romero, A. Macías-García","doi":"10.2139/ssrn.4388787","DOIUrl":null,"url":null,"abstract":"Tissue engineering is a continuously evolving field. One of the main lines of research in this field focuses on the replacement of bone defects with materials designed to interact with the cells of a living organism in order to provide the body with a structure on which new tissues can easily grow. Among the most commonly used materials are bioglasses, which are frequently used due to their versatility and good properties. This article discusses the results of the production of an injectable paste of Bioglass® 45S5 and hydroxyapatite on a 3D printed porous structure by additive manufacturing, using a thermoplastic (PLA). The results were evaluated in a specific application of the paste, so the mechanical and bioactive properties were studied to show the multiple possibilities of using this combination for its application in regenerative medicine and more specifically in bone implants.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"144 1","pages":"105937"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and characterisation of bioglass and hydroxyapatite-filled scaffolds.\",\"authors\":\"Laura Mendoza-Cerezo, J. Rodríguez-Rego, Anabel Soriano-Carrera, Alfonso C. Marcos-Romero, A. Macías-García\",\"doi\":\"10.2139/ssrn.4388787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tissue engineering is a continuously evolving field. One of the main lines of research in this field focuses on the replacement of bone defects with materials designed to interact with the cells of a living organism in order to provide the body with a structure on which new tissues can easily grow. Among the most commonly used materials are bioglasses, which are frequently used due to their versatility and good properties. This article discusses the results of the production of an injectable paste of Bioglass® 45S5 and hydroxyapatite on a 3D printed porous structure by additive manufacturing, using a thermoplastic (PLA). The results were evaluated in a specific application of the paste, so the mechanical and bioactive properties were studied to show the multiple possibilities of using this combination for its application in regenerative medicine and more specifically in bone implants.\",\"PeriodicalId\":94117,\"journal\":{\"name\":\"Journal of the mechanical behavior of biomedical materials\",\"volume\":\"144 1\",\"pages\":\"105937\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the mechanical behavior of biomedical materials\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4388787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4388787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

组织工程是一个不断发展的领域。该领域的主要研究方向之一集中在用设计成与活体细胞相互作用的材料替换骨缺损,以便为身体提供一种新组织可以容易生长的结构。生物玻璃是最常用的材料之一,由于其多功能性和良好的性能而经常使用。本文讨论了使用热塑性塑料(PLA)通过增材制造在3D打印多孔结构上生产Bioglass®45S5和羟基磷灰石的可注射糊状物的结果。该结果在该糊剂的特定应用中进行了评估,因此对其机械和生物活性进行了研究,以表明将该组合用于再生医学,更具体地说,用于骨植入物的多种可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication and characterisation of bioglass and hydroxyapatite-filled scaffolds.
Tissue engineering is a continuously evolving field. One of the main lines of research in this field focuses on the replacement of bone defects with materials designed to interact with the cells of a living organism in order to provide the body with a structure on which new tissues can easily grow. Among the most commonly used materials are bioglasses, which are frequently used due to their versatility and good properties. This article discusses the results of the production of an injectable paste of Bioglass® 45S5 and hydroxyapatite on a 3D printed porous structure by additive manufacturing, using a thermoplastic (PLA). The results were evaluated in a specific application of the paste, so the mechanical and bioactive properties were studied to show the multiple possibilities of using this combination for its application in regenerative medicine and more specifically in bone implants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信