Chongxiong Duan , Kuan Liang , Zena Zhang , Jingjing Li , Ting Chen , Daofei Lv , Libo Li , Le Kang , Kai Wang , Han Hu , Hongxia Xi
{"title":"纳米级多孔金属有机骨架的合成研究进展","authors":"Chongxiong Duan , Kuan Liang , Zena Zhang , Jingjing Li , Ting Chen , Daofei Lv , Libo Li , Le Kang , Kai Wang , Han Hu , Hongxia Xi","doi":"10.1016/j.nanoms.2021.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoscale hierarchically porous metal–organic frameworks (NHP-MOFs) have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size (<1 μm) and hierarchical porous structure (micro-, meso- and/or macro-pores) of MOFs. This review focuses on recent advances in the main synthetic strategies for NHP-MOFs based on different metal ions (e.g., Cu, Fe, Co, Zn, Al, Zr, and Cr), including the template method, composite technology, post-synthetic modification, <em>in situ</em> growth and the grind method. In addition, the mechanisms of synthesis, regulation techniques and the advantages and disadvantages of various methods are discussed. Finally, the challenges and prospects of the commercialisation of promising NHP-MOFs are also presented. The purpose of this review is to provide a road map for future design and development of NHP-MOFs for practical application.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"4 4","pages":"Pages 351-365"},"PeriodicalIF":9.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965121000957/pdfft?md5=4737006e76bfbb9d0990a3cf51d54d70&pid=1-s2.0-S2589965121000957-main.pdf","citationCount":"20","resultStr":"{\"title\":\"Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks\",\"authors\":\"Chongxiong Duan , Kuan Liang , Zena Zhang , Jingjing Li , Ting Chen , Daofei Lv , Libo Li , Le Kang , Kai Wang , Han Hu , Hongxia Xi\",\"doi\":\"10.1016/j.nanoms.2021.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanoscale hierarchically porous metal–organic frameworks (NHP-MOFs) have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size (<1 μm) and hierarchical porous structure (micro-, meso- and/or macro-pores) of MOFs. This review focuses on recent advances in the main synthetic strategies for NHP-MOFs based on different metal ions (e.g., Cu, Fe, Co, Zn, Al, Zr, and Cr), including the template method, composite technology, post-synthetic modification, <em>in situ</em> growth and the grind method. In addition, the mechanisms of synthesis, regulation techniques and the advantages and disadvantages of various methods are discussed. Finally, the challenges and prospects of the commercialisation of promising NHP-MOFs are also presented. The purpose of this review is to provide a road map for future design and development of NHP-MOFs for practical application.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"4 4\",\"pages\":\"Pages 351-365\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965121000957/pdfft?md5=4737006e76bfbb9d0990a3cf51d54d70&pid=1-s2.0-S2589965121000957-main.pdf\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965121000957\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965121000957","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks
Nanoscale hierarchically porous metal–organic frameworks (NHP-MOFs) have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size (<1 μm) and hierarchical porous structure (micro-, meso- and/or macro-pores) of MOFs. This review focuses on recent advances in the main synthetic strategies for NHP-MOFs based on different metal ions (e.g., Cu, Fe, Co, Zn, Al, Zr, and Cr), including the template method, composite technology, post-synthetic modification, in situ growth and the grind method. In addition, the mechanisms of synthesis, regulation techniques and the advantages and disadvantages of various methods are discussed. Finally, the challenges and prospects of the commercialisation of promising NHP-MOFs are also presented. The purpose of this review is to provide a road map for future design and development of NHP-MOFs for practical application.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.