羟基磷灰石改性二氧化硅与聚乙二醇复合磷酸钙骨水泥

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
T. Windarti, N. Prasetya, N. Ngadiwiyana, L. Nulandaya
{"title":"羟基磷灰石改性二氧化硅与聚乙二醇复合磷酸钙骨水泥","authors":"T. Windarti, N. Prasetya, N. Ngadiwiyana, L. Nulandaya","doi":"10.22146/ijc.80298","DOIUrl":null,"url":null,"abstract":"A composite of hydroxyapatite modified silica (HASiO2) and 10% (w/w) polyeugenol (PE) was synthesized to produce a calcium phosphate cement with antibacterial activity. The compatibility of the composite (HASiO2_PE) with bone filler requirements was determined due to its crystal, surface, antibacterial, and cytocompatibility properties. The results showed that compositing HASiO2 and PE did not affect HA's chemical dan crystal properties. The presence of PE changed HASiO2 morphology to be coarser and denser than before composited. PE tends to agglomerate but does not affect the hydrophilicity of HASiO2. The presence of PE increased the surface area and total pore volume but lowered the average pore size. Different from pure PE, the composite of HASiO2_PE that contains of 10% PE has higher antibacterial activity toward Escherichia coli than Staphylococcus aureus. The composite is biocompatible because the cytotoxicity test toward pre-osteoblast cells resulted in an IC50 of 2092 μg/mL. Thus, due to its chemical, surface, antibacterial, and cytocompatibility properties, the HASiO2_PE composite can be recommended as a bone filler material.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calcium Phosphate Cement Composed of Hydroxyapatite Modified Silica and Polyeugenol as a Bone Filler Material\",\"authors\":\"T. Windarti, N. Prasetya, N. Ngadiwiyana, L. Nulandaya\",\"doi\":\"10.22146/ijc.80298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A composite of hydroxyapatite modified silica (HASiO2) and 10% (w/w) polyeugenol (PE) was synthesized to produce a calcium phosphate cement with antibacterial activity. The compatibility of the composite (HASiO2_PE) with bone filler requirements was determined due to its crystal, surface, antibacterial, and cytocompatibility properties. The results showed that compositing HASiO2 and PE did not affect HA's chemical dan crystal properties. The presence of PE changed HASiO2 morphology to be coarser and denser than before composited. PE tends to agglomerate but does not affect the hydrophilicity of HASiO2. The presence of PE increased the surface area and total pore volume but lowered the average pore size. Different from pure PE, the composite of HASiO2_PE that contains of 10% PE has higher antibacterial activity toward Escherichia coli than Staphylococcus aureus. The composite is biocompatible because the cytotoxicity test toward pre-osteoblast cells resulted in an IC50 of 2092 μg/mL. Thus, due to its chemical, surface, antibacterial, and cytocompatibility properties, the HASiO2_PE composite can be recommended as a bone filler material.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.80298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.80298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合成了羟基磷灰石改性二氧化硅(HASiO2)和10%(w/w)聚ugenol(PE)的复合材料,制备了具有抗菌活性的磷酸钙水泥。由于其晶体、表面、抗菌和细胞相容性特性,确定了复合材料(HASiO2_PE)与骨填料要求的相容性。结果表明,HASiO2和PE的复合不影响HA的化学和结晶性能。PE的存在使HASiO2的形态比复合前更粗糙、更致密。PE倾向于聚集,但不影响HASiO2的亲水性。PE的存在增加了表面积和总孔体积,但降低了平均孔径。与纯PE不同,含10%PE的HASiO2_PE复合材料对大肠杆菌的抗菌活性高于对金黄色葡萄球菌的抗菌活性。该复合材料具有生物相容性,因为对前成骨细胞的细胞毒性测试产生了2092μg/mL的IC50。因此,由于其化学、表面、抗菌和细胞相容性,HASiO2_PE复合材料可以推荐作为骨填充材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calcium Phosphate Cement Composed of Hydroxyapatite Modified Silica and Polyeugenol as a Bone Filler Material
A composite of hydroxyapatite modified silica (HASiO2) and 10% (w/w) polyeugenol (PE) was synthesized to produce a calcium phosphate cement with antibacterial activity. The compatibility of the composite (HASiO2_PE) with bone filler requirements was determined due to its crystal, surface, antibacterial, and cytocompatibility properties. The results showed that compositing HASiO2 and PE did not affect HA's chemical dan crystal properties. The presence of PE changed HASiO2 morphology to be coarser and denser than before composited. PE tends to agglomerate but does not affect the hydrophilicity of HASiO2. The presence of PE increased the surface area and total pore volume but lowered the average pore size. Different from pure PE, the composite of HASiO2_PE that contains of 10% PE has higher antibacterial activity toward Escherichia coli than Staphylococcus aureus. The composite is biocompatible because the cytotoxicity test toward pre-osteoblast cells resulted in an IC50 of 2092 μg/mL. Thus, due to its chemical, surface, antibacterial, and cytocompatibility properties, the HASiO2_PE composite can be recommended as a bone filler material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信