{"title":"Khāzinī《Mu’tabar zj》中的机械同心圆太阳模型","authors":"S. Mohammad Mozaffari","doi":"10.1007/s00407-022-00292-9","DOIUrl":null,"url":null,"abstract":"<div><p>The paper brings into light and discusses a concentric solar model briefly described in Chapter 5 of Section III of ‘Abd al-Raḥmān al-Khāzinī’s <i>On experimental astronomy</i>, a treatise embedded in the prolegomenon of his comprehensive <i>Mu‘tabar zīj</i>, completed about 1121 <span>c.e.</span> In it, the Sun is assumed to rotate on the circumference of a circle concentric with the Earth and coplanar with the ecliptic, but the motion of the vector joining the Earth and Sun is monitored by a small eccentric hypocycle. The ratio between the distance of the hypocycle’s center from the Earth and the hypocycle’s radius is equal to the solar eccentricity in the eccentric model. The model is to account for the constancy of the apparent diameter of the solar disk as held by Ptolemy. The source of the model is unknown. Since the mechanism employed in it clearly resembles the pin-and-slot device, whose use in mechanical astronomical instruments has a long history from the Antikythera Mechanism to the medieval solar, lunar, and planetary equatoria and dials, we argue that the solar model can be positioned within this long-standing tradition and considered the result of the correct understanding of some Byzantine prototype and thus a typical example of the transmission of astronomical ideas via media of the material culture.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"76 5","pages":"513 - 529"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanical concentric solar model in Khāzinī’s Mu‘tabar zīj\",\"authors\":\"S. Mohammad Mozaffari\",\"doi\":\"10.1007/s00407-022-00292-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper brings into light and discusses a concentric solar model briefly described in Chapter 5 of Section III of ‘Abd al-Raḥmān al-Khāzinī’s <i>On experimental astronomy</i>, a treatise embedded in the prolegomenon of his comprehensive <i>Mu‘tabar zīj</i>, completed about 1121 <span>c.e.</span> In it, the Sun is assumed to rotate on the circumference of a circle concentric with the Earth and coplanar with the ecliptic, but the motion of the vector joining the Earth and Sun is monitored by a small eccentric hypocycle. The ratio between the distance of the hypocycle’s center from the Earth and the hypocycle’s radius is equal to the solar eccentricity in the eccentric model. The model is to account for the constancy of the apparent diameter of the solar disk as held by Ptolemy. The source of the model is unknown. Since the mechanism employed in it clearly resembles the pin-and-slot device, whose use in mechanical astronomical instruments has a long history from the Antikythera Mechanism to the medieval solar, lunar, and planetary equatoria and dials, we argue that the solar model can be positioned within this long-standing tradition and considered the result of the correct understanding of some Byzantine prototype and thus a typical example of the transmission of astronomical ideas via media of the material culture.</p></div>\",\"PeriodicalId\":50982,\"journal\":{\"name\":\"Archive for History of Exact Sciences\",\"volume\":\"76 5\",\"pages\":\"513 - 529\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for History of Exact Sciences\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00407-022-00292-9\",\"RegionNum\":2,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-022-00292-9","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
A mechanical concentric solar model in Khāzinī’s Mu‘tabar zīj
The paper brings into light and discusses a concentric solar model briefly described in Chapter 5 of Section III of ‘Abd al-Raḥmān al-Khāzinī’s On experimental astronomy, a treatise embedded in the prolegomenon of his comprehensive Mu‘tabar zīj, completed about 1121 c.e. In it, the Sun is assumed to rotate on the circumference of a circle concentric with the Earth and coplanar with the ecliptic, but the motion of the vector joining the Earth and Sun is monitored by a small eccentric hypocycle. The ratio between the distance of the hypocycle’s center from the Earth and the hypocycle’s radius is equal to the solar eccentricity in the eccentric model. The model is to account for the constancy of the apparent diameter of the solar disk as held by Ptolemy. The source of the model is unknown. Since the mechanism employed in it clearly resembles the pin-and-slot device, whose use in mechanical astronomical instruments has a long history from the Antikythera Mechanism to the medieval solar, lunar, and planetary equatoria and dials, we argue that the solar model can be positioned within this long-standing tradition and considered the result of the correct understanding of some Byzantine prototype and thus a typical example of the transmission of astronomical ideas via media of the material culture.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.