Hongcheng Yan, Liang Qiao, Wei Wu, Juan A. Fraire, Dong Zhou, Luming Li, Yong Xu
{"title":"基于SATNET - OSPF的未来空间-地面综合网络中的路由","authors":"Hongcheng Yan, Liang Qiao, Wei Wu, Juan A. Fraire, Dong Zhou, Luming Li, Yong Xu","doi":"10.1002/sat.1495","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Connectivity in satellite networks is governed by the spacecraft nodes' orbital dynamics together with the planet's continuous rotation where ground nodes are located. The resulting time-dynamic but predictable topology demands the design of specific distributed routing schemes. However, terrestrial Internet routing schemes' maturity, proven scalability, and efficiency shall be leveraged whenever possible to facilitate space-terrestrial integration while reducing risk and costs. In line with this reflection, we introduce SATNET-OSPF: a backward-compatible satellite extension for the widely used Open Shortest Path First routing protocol. The key features of SATNET-OSPF are (a) accurate routing interface mapping to inter-satellite links and ground-to-satellite links, (b) accelerated link-up/link-down event detection adapted to space-specific wireless technologies, (c) proactive routing and forwarding mechanism to take advantage of predicted link-down events, and (d) low memory footprint topology model to efficiently propagate the forthcoming space connectivity events via constrained telecommand links. Leveraging existing IPv6 and OSPFv3 open-source stacks, we implemented SATNET-OSPF in an actual space router comprising a space-grade SPARC V8 CPU and a radiation-hardened FPGA. Furthermore, we present the details of an emulation test bench supporting various configurations with COTS terrestrial OSPF routers that enabled a realistic performance evaluation of the SATNET-OSPF. Results show that SATNET-OSPF reduced OSPFv3 routing protocol overhead by up to 31%; shortened the link event detection delay by four orders of magnitude; decreased the routing outage by a factor of 22; and ensured flooding control message generation and forwarding times, as well as routing computing time, satisfy the original requirements (192, 37, and 17 ms, respectively).</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"42 1","pages":"1-25"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Routing in future space-terrestrial integrated networks with SATNET-OSPF\",\"authors\":\"Hongcheng Yan, Liang Qiao, Wei Wu, Juan A. Fraire, Dong Zhou, Luming Li, Yong Xu\",\"doi\":\"10.1002/sat.1495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Connectivity in satellite networks is governed by the spacecraft nodes' orbital dynamics together with the planet's continuous rotation where ground nodes are located. The resulting time-dynamic but predictable topology demands the design of specific distributed routing schemes. However, terrestrial Internet routing schemes' maturity, proven scalability, and efficiency shall be leveraged whenever possible to facilitate space-terrestrial integration while reducing risk and costs. In line with this reflection, we introduce SATNET-OSPF: a backward-compatible satellite extension for the widely used Open Shortest Path First routing protocol. The key features of SATNET-OSPF are (a) accurate routing interface mapping to inter-satellite links and ground-to-satellite links, (b) accelerated link-up/link-down event detection adapted to space-specific wireless technologies, (c) proactive routing and forwarding mechanism to take advantage of predicted link-down events, and (d) low memory footprint topology model to efficiently propagate the forthcoming space connectivity events via constrained telecommand links. Leveraging existing IPv6 and OSPFv3 open-source stacks, we implemented SATNET-OSPF in an actual space router comprising a space-grade SPARC V8 CPU and a radiation-hardened FPGA. Furthermore, we present the details of an emulation test bench supporting various configurations with COTS terrestrial OSPF routers that enabled a realistic performance evaluation of the SATNET-OSPF. Results show that SATNET-OSPF reduced OSPFv3 routing protocol overhead by up to 31%; shortened the link event detection delay by four orders of magnitude; decreased the routing outage by a factor of 22; and ensured flooding control message generation and forwarding times, as well as routing computing time, satisfy the original requirements (192, 37, and 17 ms, respectively).</p>\\n </div>\",\"PeriodicalId\":50289,\"journal\":{\"name\":\"International Journal of Satellite Communications and Networking\",\"volume\":\"42 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Satellite Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sat.1495\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1495","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Routing in future space-terrestrial integrated networks with SATNET-OSPF
Connectivity in satellite networks is governed by the spacecraft nodes' orbital dynamics together with the planet's continuous rotation where ground nodes are located. The resulting time-dynamic but predictable topology demands the design of specific distributed routing schemes. However, terrestrial Internet routing schemes' maturity, proven scalability, and efficiency shall be leveraged whenever possible to facilitate space-terrestrial integration while reducing risk and costs. In line with this reflection, we introduce SATNET-OSPF: a backward-compatible satellite extension for the widely used Open Shortest Path First routing protocol. The key features of SATNET-OSPF are (a) accurate routing interface mapping to inter-satellite links and ground-to-satellite links, (b) accelerated link-up/link-down event detection adapted to space-specific wireless technologies, (c) proactive routing and forwarding mechanism to take advantage of predicted link-down events, and (d) low memory footprint topology model to efficiently propagate the forthcoming space connectivity events via constrained telecommand links. Leveraging existing IPv6 and OSPFv3 open-source stacks, we implemented SATNET-OSPF in an actual space router comprising a space-grade SPARC V8 CPU and a radiation-hardened FPGA. Furthermore, we present the details of an emulation test bench supporting various configurations with COTS terrestrial OSPF routers that enabled a realistic performance evaluation of the SATNET-OSPF. Results show that SATNET-OSPF reduced OSPFv3 routing protocol overhead by up to 31%; shortened the link event detection delay by four orders of magnitude; decreased the routing outage by a factor of 22; and ensured flooding control message generation and forwarding times, as well as routing computing time, satisfy the original requirements (192, 37, and 17 ms, respectively).
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols